Suppr超能文献

计算监测误差网格分析:步骤与示例。

Computing the surveillance error grid analysis: procedure and examples.

作者信息

Kovatchev Boris P, Wakeman Christian A, Breton Marc D, Kost Gerald J, Louie Richard F, Tran Nam K, Klonoff David C

机构信息

University of Virginia, Center for Diabetes Technology, Charlottesville, VA, USA

University of Virginia, Center for Diabetes Technology, Charlottesville, VA, USA.

出版信息

J Diabetes Sci Technol. 2014 Jul;8(4):673-84. doi: 10.1177/1932296814539590. Epub 2014 Jun 13.

Abstract

The surveillance error grid (SEG) analysis is a tool for analysis and visualization of blood glucose monitoring (BGM) errors, based on the opinions of 206 diabetes clinicians who rated 4 distinct treatment scenarios. Resulting from this large-scale inquiry is a matrix of 337 561 risk ratings, 1 for each pair of (reference, BGM) readings ranging from 20 to 580 mg/dl. The computation of the SEG is therefore complex and in need of automation. The SEG software introduced in this article automates the task of assigning a degree of risk to each data point for a set of measured and reference blood glucose values so that the data can be distributed into 8 risk zones. The software's 2 main purposes are to (1) distribute a set of BG Monitor data into 8 risk zones ranging from none to extreme and (2) present the data in a color coded display to promote visualization. Besides aggregating the data into 8 zones corresponding to levels of risk, the SEG computes the number and percentage of data pairs in each zone and the number/percentage of data pairs above/below the diagonal line in each zone, which are associated with BGM errors creating risks for hypo- or hyperglycemia, respectively. To illustrate the action of the SEG software we first present computer-simulated data stratified along error levels defined by ISO 15197:2013. This allows the SEG to be linked to this established standard. Further illustration of the SEG procedure is done with a series of previously published data, which reflect the performance of BGM devices and test strips under various environmental conditions. We conclude that the SEG software is a useful addition to the SEG analysis presented in this journal, developed to assess the magnitude of clinical risk from analytically inaccurate data in a variety of high-impact situations such as intensive care and disaster settings.

摘要

监测误差网格(SEG)分析是一种基于206名糖尿病临床医生对4种不同治疗场景的评分来分析和可视化血糖监测(BGM)误差的工具。这项大规模调查得出了一个包含337561个风险评级的矩阵,每对(参考值,BGM值)读数(范围为20至580mg/dl)对应一个评级。因此,SEG的计算很复杂,需要自动化。本文介绍的SEG软件可自动为一组测量的血糖值和参考血糖值的每个数据点分配风险程度,以便将数据分布到8个风险区域。该软件的两个主要目的是:(1)将一组血糖监测数据分布到从无风险到极高风险的8个风险区域;(2)以颜色编码显示呈现数据,以促进可视化。除了将数据汇总到与风险水平相对应的8个区域外,SEG还计算每个区域中数据对的数量和百分比,以及每个区域中对角线上方/下方数据对的数量/百分比,这些分别与导致低血糖或高血糖风险的BGM误差相关。为了说明SEG软件的作用,我们首先展示沿ISO 15197:2013定义的误差水平分层的计算机模拟数据。这使得SEG能够与这个既定标准相关联。通过一系列先前发表的数据进一步说明SEG程序,这些数据反映了BGM设备和测试条在各种环境条件下的性能。我们得出结论,SEG软件是对本期刊中提出的SEG分析的有益补充,该分析旨在评估在重症监护和灾难场景等各种高影响情况下,分析不准确数据所带来的临床风险程度。

相似文献

1
Computing the surveillance error grid analysis: procedure and examples.
J Diabetes Sci Technol. 2014 Jul;8(4):673-84. doi: 10.1177/1932296814539590. Epub 2014 Jun 13.
2
The surveillance error grid.
J Diabetes Sci Technol. 2014 Jul;8(4):658-72. doi: 10.1177/1932296814539589. Epub 2014 Jun 13.
4
Retrospective Analysis of Continuous Glucose Monitoring Data With the Surveillance Error Grid Supports Nonadjunctive Dosing Decisions.
J Diabetes Sci Technol. 2017 Sep;11(5):942-946. doi: 10.1177/1932296817694180. Epub 2017 Feb 15.
5
Evaluating quality of glycemic control: graphical displays of hypo- and hyperglycemia, time in target range, and mean glucose.
J Diabetes Sci Technol. 2015 Jan;9(1):56-62. doi: 10.1177/1932296814551046. Epub 2014 Oct 14.
6
Blood Gas Analyzer Accuracy of Glucose Measurements.
Mayo Clin Proc. 2017 Jul;92(7):1030-1041. doi: 10.1016/j.mayocp.2017.03.009. Epub 2017 Jun 20.
8
Hypo- and hyperglycemia in relation to the mean, standard deviation, coefficient of variation, and nature of the glucose distribution.
Diabetes Technol Ther. 2012 Oct;14(10):868-76. doi: 10.1089/dia.2012.0062. Epub 2012 Sep 6.
10
Limitations of statistical measures of error in assessing the accuracy of continuous glucose sensors.
Diabetes Technol Ther. 2005 Oct;7(5):665-72; discussion 673-4. doi: 10.1089/dia.2005.7.665.

引用本文的文献

2
Effect of intravenous vitamin C on arterial blood gas analyser and Accu-Chek point-of-care glucose monitoring in critically ill patients.
Crit Care Resusc. 2023 Oct 19;24(2):175-182. doi: 10.51893/2022.2.OA7. eCollection 2022 Jun 6.
3
Evaluation of the FreeStyle Libre, a flash glucose monitoring system, in client-owned cats with diabetes mellitus.
J Feline Med Surg. 2022 Aug;24(8):e223-e231. doi: 10.1177/1098612X221104051. Epub 2022 Jun 28.
5
The Accuracy of Continuous Glucose Monitoring in the Medical Intensive Care Unit.
J Diabetes Sci Technol. 2022 Nov;16(6):1550-1554. doi: 10.1177/19322968211027590. Epub 2021 Jul 5.
6
Use and Accuracy of Inpatient CGM During the COVID-19 Pandemic: An Observational Study of General Medicine and ICU Patients.
J Diabetes Sci Technol. 2022 Sep;16(5):1136-1143. doi: 10.1177/19322968211008446. Epub 2021 May 10.
8
Review of Non-invasive Glucose Sensing Techniques: Optical, Electrical and Breath Acetone.
Sensors (Basel). 2020 Feb 25;20(5):1251. doi: 10.3390/s20051251.

本文引用的文献

1
The surveillance error grid.
J Diabetes Sci Technol. 2014 Jul;8(4):658-72. doi: 10.1177/1932296814539589. Epub 2014 Jun 13.
2
Short-Term Thermal-Humidity Shock Affects Point-of-Care Glucose Testing: Implications for Health Professionals and Patients.
J Diabetes Sci Technol. 2014 Jan;8(1):83-88. doi: 10.1177/1932296813514325. Epub 2014 Jan 1.
3
Effects of humidity on foil and vial packaging to preserve glucose and lactate test strips for disaster readiness.
Disaster Med Public Health Prep. 2014 Feb;8(1):51-7. doi: 10.1017/dmp.2014.13. Epub 2014 Mar 4.
4
Effects of dynamic temperature and humidity stresses on point-of-care glucose testing for disaster care.
Disaster Med Public Health Prep. 2012 Oct;6(3):232-40. doi: 10.1001/dmp.2012.42.
6
Mapping point-of-care performance using locally-smoothed median and maximum absolute difference curves.
Clin Chem Lab Med. 2011 Oct;49(10):1637-46. doi: 10.1515/CCLM.2011.655.
8
Glucose meter performance criteria for tight glycemic control estimated by simulation modeling.
Clin Chem. 2010 Jul;56(7):1091-7. doi: 10.1373/clinchem.2010.145367. Epub 2010 May 28.
10
Assessing the performance of handheld glucose testing for critical care.
Diabetes Technol Ther. 2008 Dec;10(6):445-51. doi: 10.1089/dia.2008.0049.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验