Suppr超能文献

具有狄利克雷边界条件的反应扩散神经网络的被动性与稳定性分析

Passivity and stability analysis of reaction-diffusion neural networks with Dirichlet boundary conditions.

作者信息

Wang Jin-Liang, Wu Huai-Ning, Guo Lei

机构信息

Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China.

出版信息

IEEE Trans Neural Netw. 2011 Dec;22(12):2105-16. doi: 10.1109/TNN.2011.2170096. Epub 2011 Oct 14.

Abstract

This paper is concerned with the passivity and stability problems of reaction-diffusion neural networks (RDNNs) in which the input and output variables are varied with the time and space variables. By utilizing the Lyapunov functional method combined with the inequality techniques, some sufficient conditions ensuring the passivity and global exponential stability are derived. Furthermore, when the parameter uncertainties appear in RDNNs, several criteria for robust passivity and robust global exponential stability are also presented. Finally, a numerical example is provided to illustrate the effectiveness of the proposed criteria.

摘要

本文关注反应扩散神经网络(RDNNs)的无源性和稳定性问题,其中输入和输出变量随时间和空间变量而变化。通过利用李雅普诺夫泛函方法结合不等式技术,推导了确保无源性和全局指数稳定性的一些充分条件。此外,当RDNNs中出现参数不确定性时,还给出了几个关于鲁棒无源性和鲁棒全局指数稳定性的判据。最后,给出一个数值例子以说明所提判据的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验