Wang Jin-Liang, Wu Huai-Ning, Guo Lei
Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China.
IEEE Trans Neural Netw. 2011 Dec;22(12):2105-16. doi: 10.1109/TNN.2011.2170096. Epub 2011 Oct 14.
This paper is concerned with the passivity and stability problems of reaction-diffusion neural networks (RDNNs) in which the input and output variables are varied with the time and space variables. By utilizing the Lyapunov functional method combined with the inequality techniques, some sufficient conditions ensuring the passivity and global exponential stability are derived. Furthermore, when the parameter uncertainties appear in RDNNs, several criteria for robust passivity and robust global exponential stability are also presented. Finally, a numerical example is provided to illustrate the effectiveness of the proposed criteria.
本文关注反应扩散神经网络(RDNNs)的无源性和稳定性问题,其中输入和输出变量随时间和空间变量而变化。通过利用李雅普诺夫泛函方法结合不等式技术,推导了确保无源性和全局指数稳定性的一些充分条件。此外,当RDNNs中出现参数不确定性时,还给出了几个关于鲁棒无源性和鲁棒全局指数稳定性的判据。最后,给出一个数值例子以说明所提判据的有效性。