Suppr超能文献

基于时滞反应扩散忆阻器神经网络的被动性分析。

Passivity analysis of delayed reaction-diffusion memristor-based neural networks.

机构信息

School of Automation, Huazhong University of Science and Technology, Wuhan, PR China.

School of Automation, Huazhong University of Science and Technology, Wuhan, PR China.

出版信息

Neural Netw. 2019 Jan;109:159-167. doi: 10.1016/j.neunet.2018.10.004. Epub 2018 Oct 29.

Abstract

This paper discusses the passivity of delayed reaction-diffusion memristor-based neural networks (RDMNNs). By exploiting inequality techniques and by constructing appropriate Lyapunov functional, several sufficient conditions are obtained in the form of linear matrix inequalities (LMIs), which can be used to ascertain the passivity, output and input strict passivity of delayed RDMNNs. In addition, the passivity of RDMNNs without any delay is also considered. These conditions, represented by LMIs, can be easily verified by virtue of the Matlab toolbox. Finally, some illustrative examples are provided to substantiate the effectiveness and validity of the theoretical results, and to present an application of RDMNN in pseudo-random number generation.

摘要

本文讨论了时滞反应扩散忆阻神经网络(RDMNN)的被动性。通过利用不等式技术并构建适当的李雅普诺夫函数,以线性矩阵不等式(LMIs)的形式获得了几个充分条件,可用于确定时滞 RDMNN 的被动性、输出和输入严格被动性。此外,还考虑了没有任何时滞的 RDMNN 的被动性。这些条件以 LMIs 的形式表示,可以借助 Matlab 工具箱轻松验证。最后,提供了一些说明性示例,以证实理论结果的有效性和有效性,并展示 RDMNN 在伪随机数生成中的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验