Suppr超能文献

金属离子在核糖开关调控中的作用。

The roles of metal ions in regulation by riboswitches.

作者信息

Ferré-D'Amaré Adrian R, Winkler Wade C

机构信息

Howard Hughes Medical Institute and Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.

出版信息

Met Ions Life Sci. 2011;9:141-73. doi: 10.1039/9781849732512-00141.

Abstract

Metal ions are required by all organisms in order to execute an array of essential molecular functions. They play a critical role in many catalytic mechanisms and structural properties. Proper homeostasis of ions is critical; levels that are aberrantly low or high are deleterious to cellular physiology. To maintain stable intracellular pools, metal ion-sensing regulatory (metalloregulatory) proteins couple metal ion concentration fluctuations with expression of genes encoding for cation transport or sequestration. However, these transcriptional-based regulatory strategies are not the only mechanisms by which organisms coordinate metal ions with gene expression. Intriguingly, a few classes of signal-responsive RNA elements have also been discovered to function as metalloregulatory agents. This suggests that RNA-based regulatory strategies can be precisely tuned to intracellular metal ion pools, functionally akin to metal-loregulatory proteins. In addition to these metal-sensing regulatory RNAs, there is a yet broader role for metal ions in directly assisting the structural integrity of other signal-responsive regulatory RNA elements. In this chapter, we discuss how the intimate physicochemical relationship between metal ions and nucleic acids is important for the structure and function of metal ion- and metabolite-sensing regulatory RNAs.

摘要

所有生物体都需要金属离子来执行一系列基本的分子功能。它们在许多催化机制和结构特性中起着关键作用。离子的适当稳态至关重要;异常低或高的水平对细胞生理有害。为了维持稳定的细胞内离子池,金属离子感应调节(金属调节)蛋白将金属离子浓度波动与编码阳离子转运或螯合的基因表达联系起来。然而,这些基于转录的调节策略并不是生物体协调金属离子与基因表达的唯一机制。有趣的是,还发现了几类信号响应RNA元件可作为金属调节因子发挥作用。这表明基于RNA的调节策略可以精确地调节到细胞内金属离子池,在功能上类似于金属调节蛋白。除了这些金属感应调节RNA外,金属离子在直接协助其他信号响应调节RNA元件的结构完整性方面还有更广泛的作用。在本章中,我们将讨论金属离子与核酸之间密切的物理化学关系如何对金属离子和代谢物感应调节RNA的结构和功能很重要。

相似文献

1
The roles of metal ions in regulation by riboswitches.
Met Ions Life Sci. 2011;9:141-73. doi: 10.1039/9781849732512-00141.
3
Multiple metal-binding cores are required for metalloregulation by M-box riboswitch RNAs.
J Mol Biol. 2009 Sep 25;392(3):723-35. doi: 10.1016/j.jmb.2009.07.033. Epub 2009 Jul 17.
4
Genetic analysis of riboswitch-mediated transcriptional regulation responding to Mn2+ in Salmonella.
J Biol Chem. 2014 Apr 18;289(16):11353-11366. doi: 10.1074/jbc.M113.517516. Epub 2014 Mar 4.
5
Bacterial gene regulation: metal ion sensing by proteins or RNA.
Trends Biotechnol. 2006 Sep;24(9):383-6. doi: 10.1016/j.tibtech.2006.07.004. Epub 2006 Jul 26.
6
Types and concentrations of metal ions affect local structure and dynamics of RNA.
Phys Rev E. 2016 Oct;94(4-1):040401. doi: 10.1103/PhysRevE.94.040401. Epub 2016 Oct 24.
8
Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking.
Chem Rev. 2024 Dec 25;124(24):13574-13659. doi: 10.1021/acs.chemrev.4c00264. Epub 2024 Dec 10.
9
Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch.
Nature. 2006 Jun 29;441(7097):1167-71. doi: 10.1038/nature04740. Epub 2006 May 21.
10
Insights into metalloregulation by M-box riboswitch RNAs via structural analysis of manganese-bound complexes.
J Mol Biol. 2011 Apr 8;407(4):556-70. doi: 10.1016/j.jmb.2011.01.049. Epub 2011 Feb 15.

引用本文的文献

1
Population-level control of two manganese oxidases expands the niche for bacterial manganese biomineralization.
NPJ Biofilms Microbiomes. 2025 Mar 24;11(1):50. doi: 10.1038/s41522-025-00670-5.
2
Systematic Model Peptide Studies: A Crucial Step To Understand the Coordination Chemistry of Mn(II) and Fe(II) in Proteins.
Inorg Chem. 2025 Mar 24;64(11):5472-5486. doi: 10.1021/acs.inorgchem.4c05380. Epub 2025 Mar 11.
4
Key players in regulatory RNA realm of bacteria.
Biochem Biophys Rep. 2022 May 10;30:101276. doi: 10.1016/j.bbrep.2022.101276. eCollection 2022 Jul.
5
Expanding the DNA-encoded library toolbox: identifying small molecules targeting RNA.
Nucleic Acids Res. 2022 Jul 8;50(12):e67. doi: 10.1093/nar/gkac173.
6
Cooperativity and Interdependency between RNA Structure and RNA-RNA Interactions.
Noncoding RNA. 2021 Dec 15;7(4):81. doi: 10.3390/ncrna7040081.
7
The role of solute binding proteins in signal transduction.
Comput Struct Biotechnol J. 2021 Mar 26;19:1786-1805. doi: 10.1016/j.csbj.2021.03.029. eCollection 2021.
8
A bacterial riboswitch class senses xanthine and uric acid to regulate genes associated with purine oxidation.
RNA. 2020 Aug;26(8):960-968. doi: 10.1261/rna.075218.120. Epub 2020 Apr 28.
9
Convergent Use of Heptacoordination for Cation Selectivity by RNA and Protein Metalloregulators.
Cell Chem Biol. 2018 Aug 16;25(8):962-973.e5. doi: 10.1016/j.chembiol.2018.04.016. Epub 2018 May 24.
10
Regulatory RNA in Mycobacterium tuberculosis, back to basics.
Pathog Dis. 2018 Jun 1;76(4). doi: 10.1093/femspd/fty035.

本文引用的文献

1
Evidence for widespread gene control function by the ydaO riboswitch candidate.
J Bacteriol. 2010 Aug;192(15):3983-9. doi: 10.1128/JB.00450-10. Epub 2010 May 28.
2
Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes.
Genome Biol. 2010;11(3):R31. doi: 10.1186/gb-2010-11-3-r31. Epub 2010 Mar 15.
4
Magnesium-sensing riboswitches in bacteria.
RNA Biol. 2010 Jan-Feb;7(1):77-83. doi: 10.4161/rna.7.1.10490. Epub 2010 Jan 1.
6
Recognition of the bacterial second messenger cyclic diguanylate by its cognate riboswitch.
Nat Struct Mol Biol. 2009 Dec;16(12):1212-7. doi: 10.1038/nsmb.1701. Epub 2009 Nov 8.
7
Structural basis of ligand binding by a c-di-GMP riboswitch.
Nat Struct Mol Biol. 2009 Dec;16(12):1218-23. doi: 10.1038/nsmb.1702. Epub 2009 Nov 8.
8
Promoter and riboswitch control of the Mg2+ transporter MgtA from Salmonella enterica.
J Bacteriol. 2010 Jan;192(2):604-7. doi: 10.1128/JB.01239-09. Epub 2009 Nov 6.
9
Activated by different signals, the PhoP/PhoQ two-component system differentially regulates metal uptake.
J Bacteriol. 2009 Dec;191(23):7174-81. doi: 10.1128/JB.00958-09. Epub 2009 Oct 2.
10
Coordination chemistry of bacterial metal transport and sensing.
Chem Rev. 2009 Oct;109(10):4644-81. doi: 10.1021/cr900077w.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验