Suppr超能文献

细菌核糖开关协同结合镍离子(Ni(2+))或钴离子(Co(2+)),并控制重金属转运蛋白的表达。

Bacterial riboswitches cooperatively bind Ni(2+) or Co(2+) ions and control expression of heavy metal transporters.

作者信息

Furukawa Kazuhiro, Ramesh Arati, Zhou Zhiyuan, Weinberg Zasha, Vallery Tenaya, Winkler Wade C, Breaker Ronald R

机构信息

Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.

Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.

出版信息

Mol Cell. 2015 Mar 19;57(6):1088-1098. doi: 10.1016/j.molcel.2015.02.009.

Abstract

Bacteria regularly encounter widely varying metal concentrations in their surrounding environment. As metals become depleted or, conversely, accrue to toxicity, microbes will activate cellular responses that act to maintain metal homeostasis. A suite of metal-sensing regulatory ("metalloregulatory") proteins orchestrate these responses by allosterically coupling the selective binding of target metals to the activity of DNA-binding domains. However, we report here the discovery, validation, and structural details of a widespread class of riboswitch RNAs, whose members selectively and tightly bind the low-abundance transition metals, Ni(2+) and Co(2+). These riboswitches bind metal cooperatively, and with affinities in the low micromolar range. The structure of a Co(2+)-bound RNA reveals a network of molecular contacts that explains how it achieves cooperative binding between adjacent sites. These findings reveal that bacteria have evolved to utilize highly selective metalloregulatory riboswitches, in addition to metalloregulatory proteins, for detecting and responding to toxic levels of heavy metals.

摘要

细菌在其周围环境中经常遇到浓度差异很大的金属。随着金属变得枯竭,或者相反,积累到有毒水平,微生物会激活细胞反应以维持金属稳态。一组金属感应调节(“金属调节”)蛋白通过将靶金属的选择性结合与DNA结合域的活性进行变构偶联来协调这些反应。然而,我们在此报告了一类广泛存在的核糖开关RNA的发现、验证及结构细节,其成员选择性且紧密地结合低丰度的过渡金属镍离子(Ni²⁺)和钴离子(Co²⁺)。这些核糖开关以协同方式结合金属,亲和力在低微摩尔范围内。结合钴离子(Co²⁺)的RNA结构揭示了一个分子接触网络,解释了它如何在相邻位点之间实现协同结合。这些发现表明,除了金属调节蛋白外,细菌已经进化出利用高度选择性的金属调节核糖开关来检测和应对重金属的毒性水平。

相似文献

2
Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch.
Nature. 2006 Jun 29;441(7097):1167-71. doi: 10.1038/nature04740. Epub 2006 May 21.
3
Multiple metal-binding cores are required for metalloregulation by M-box riboswitch RNAs.
J Mol Biol. 2009 Sep 25;392(3):723-35. doi: 10.1016/j.jmb.2009.07.033. Epub 2009 Jul 17.
4
Bacterial gene regulation: metal ion sensing by proteins or RNA.
Trends Biotechnol. 2006 Sep;24(9):383-6. doi: 10.1016/j.tibtech.2006.07.004. Epub 2006 Jul 26.
5
Mn(2+)-sensing mechanisms of yybP-ykoY orphan riboswitches.
Mol Cell. 2015 Mar 19;57(6):1110-1123. doi: 10.1016/j.molcel.2015.02.016.
6
Structure and mechanism of a metal-sensing regulatory RNA.
Cell. 2007 Sep 7;130(5):878-92. doi: 10.1016/j.cell.2007.06.051.
8
Metalloriboswitches: RNA-based inorganic ion sensors that regulate genes.
J Biol Chem. 2017 Jun 9;292(23):9441-9450. doi: 10.1074/jbc.R117.787713. Epub 2017 Apr 28.
9
The roles of metal ions in regulation by riboswitches.
Met Ions Life Sci. 2011;9:141-73. doi: 10.1039/9781849732512-00141.

引用本文的文献

2
Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking.
Chem Rev. 2024 Dec 25;124(24):13574-13659. doi: 10.1021/acs.chemrev.4c00264. Epub 2024 Dec 10.
3
Origin of ribonucleotide recognition motifs through ligand mimicry at early earth.
RNA Biol. 2024 Jan;21(1):107-121. doi: 10.1080/15476286.2024.2423149. Epub 2024 Nov 11.
4
The current riboswitch landscape in .
Microbiology (Reading). 2024 Oct;170(10). doi: 10.1099/mic.0.001508.
5
START: A Versatile Platform for Bacterial Ligand Sensing with Programmable Performances.
Adv Sci (Weinh). 2024 Sep;11(36):e2402029. doi: 10.1002/advs.202402029. Epub 2024 Jul 29.
6
Understanding the impact of transcription byproducts and contaminants.
Front Mol Biosci. 2024 Jul 10;11:1426129. doi: 10.3389/fmolb.2024.1426129. eCollection 2024.
7
A spermidine riboswitch class in bacteria exploits a close variant of an aptamer for the enzyme cofactor S-adenosylmethionine.
Cell Rep. 2023 Dec 26;42(12):113571. doi: 10.1016/j.celrep.2023.113571. Epub 2023 Dec 12.
9
Detection of Low Molecular Weight Platform Chemicals and Environmental Contaminants by Genetically Encoded Biosensors.
ACS Omega. 2023 Jun 23;8(26):23227-23239. doi: 10.1021/acsomega.3c01741. eCollection 2023 Jul 4.
10
Riboswitches, from cognition to transformation.
Synth Syst Biotechnol. 2023 Jun 3;8(3):357-370. doi: 10.1016/j.synbio.2023.05.008. eCollection 2023 Sep.

本文引用的文献

1
Genetic analysis of riboswitch-mediated transcriptional regulation responding to Mn2+ in Salmonella.
J Biol Chem. 2014 Apr 18;289(16):11353-11366. doi: 10.1074/jbc.M113.517516. Epub 2014 Mar 4.
3
Metabolite recognition principles and molecular mechanisms underlying riboswitch function.
Annu Rev Biophys. 2012;41:343-70. doi: 10.1146/annurev-biophys-101211-113224.
4
Widespread genetic switches and toxicity resistance proteins for fluoride.
Science. 2012 Jan 13;335(6065):233-235. doi: 10.1126/science.1215063. Epub 2011 Dec 22.
5
The roles of metal ions in regulation by riboswitches.
Met Ions Life Sci. 2011;9:141-73. doi: 10.1039/9781849732512-00141.
6
Prospects for riboswitch discovery and analysis.
Mol Cell. 2011 Sep 16;43(6):867-79. doi: 10.1016/j.molcel.2011.08.024.
7
The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer.
Structure. 2011 Oct 12;19(10):1413-23. doi: 10.1016/j.str.2011.06.019. Epub 2011 Sep 8.
8
Insights into metalloregulation by M-box riboswitch RNAs via structural analysis of manganese-bound complexes.
J Mol Biol. 2011 Apr 8;407(4):556-70. doi: 10.1016/j.jmb.2011.01.049. Epub 2011 Feb 15.
9
Riboswitches: structures and mechanisms.
Cold Spring Harb Perspect Biol. 2011 Jun 1;3(6):a003533. doi: 10.1101/cshperspect.a003533.
10
Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes.
Genome Biol. 2010;11(3):R31. doi: 10.1186/gb-2010-11-3-r31. Epub 2010 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验