Department of Physiology and Biophysics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China.
J Chem Phys. 2011 Oct 14;135(14):144108. doi: 10.1063/1.3647314.
Normal mode analysis of large biomolecular complexes at atomic resolution remains challenging in computational structure biology due to the requirement of large amount of memory space and central processing unit time. In this paper, we present a method called virtual interface substructure synthesis method or VISSM to calculate approximate normal modes of large biomolecular complexes at atomic resolution. VISSM introduces the subunit interfaces as independent substructures that join contacting molecules so as to keep the integrity of the system. Compared with other approximate methods, VISSM delivers atomic modes with no need of a coarse-graining-then-projection procedure. The method was examined for 54 protein-complexes with the conventional all-atom normal mode analysis using CHARMM simulation program and the overlap of the first 100 low-frequency modes is greater than 0.7 for 49 complexes, indicating its accuracy and reliability. We then applied VISSM to the satellite panicum mosaic virus (SPMV, 78,300 atoms) and to F-actin filament structures of up to 39-mer, 228,813 atoms and found that VISSM calculations capture functionally important conformational changes accessible to these structures at atomic resolution. Our results support the idea that the dynamics of a large biomolecular complex might be understood based on the motions of its component subunits and the way in which subunits bind one another.
由于需要大量的内存空间和中央处理单元时间,在计算结构生物学中,对原子分辨率的大型生物分子复合物进行正常模式分析仍然具有挑战性。在本文中,我们提出了一种称为虚拟接口亚结构合成方法(VISSM)的方法,用于计算原子分辨率的大型生物分子复合物的近似正常模式。VISSM 将亚基界面引入作为连接接触分子的独立亚结构,以保持系统的完整性。与其他近似方法相比,VISSM 无需进行粗粒化-然后投影过程即可提供原子模式。该方法使用 CHARMM 模拟程序对 54 个蛋白质复合物进行了常规全原子正常模式分析的检查,前 100 个低频模式的重叠度对于 49 个复合物大于 0.7,表明其准确性和可靠性。然后,我们将 VISSM 应用于卫星 panicum 马赛克病毒(SPMV,78300 个原子)和长达 39 个残基、228813 个原子的 F-肌动蛋白丝结构,发现 VISSM 计算可以捕获这些结构在原子分辨率下可访问的功能重要构象变化。我们的结果支持这样一种观点,即大型生物分子复合物的动力学可以基于其组成亚基的运动和亚基相互结合的方式来理解。