Pennsylvania State University, University Park, Pennsylvania, USA.
Br J Math Stat Psychol. 2012 Nov;65(3):371-401. doi: 10.1111/j.2044-8317.2011.02030.x. Epub 2011 Oct 19.
Composite measures play an important role in psychology and related disciplines. Composite measures almost always have error. Correspondingly, it is important to understand the reliability of the scores from any particular composite measure. However, the point estimates of the reliability of composite measures are fallible and thus all such point estimates should be accompanied by a confidence interval. When confidence intervals are wide, there is much uncertainty in the population value of the reliability coefficient. Given the importance of reporting confidence intervals for estimates of reliability, coupled with the undesirability of wide confidence intervals, we develop methods that allow researchers to plan sample size in order to obtain narrow confidence intervals for population reliability coefficients. We first discuss composite reliability coefficients and then provide a discussion on confidence interval formation for the corresponding population value. Using the accuracy in parameter estimation approach, we develop two methods to obtain accurate estimates of reliability by planning sample size. The first method provides a way to plan sample size so that the expected confidence interval width for the population reliability coefficient is sufficiently narrow. The second method ensures that the confidence interval width will be sufficiently narrow with some desired degree of assurance (e.g., 99% assurance that the 95% confidence interval for the population reliability coefficient will be less than W units wide). The effectiveness of our methods was verified with Monte Carlo simulation studies. We demonstrate how to easily implement the methods with easy-to-use and freely available software.
综合指标在心理学及相关学科中起着重要作用。综合指标几乎总是存在误差。因此,了解任何特定综合指标得分的可靠性是很重要的。然而,综合指标可靠性的点估计值是不可靠的,因此所有这些点估计值都应该附有一个置信区间。当置信区间较宽时,可靠性系数的总体值存在很大的不确定性。鉴于报告可靠性估计的置信区间的重要性,再加上宽置信区间的不理想性,我们开发了一些方法,使研究人员能够规划样本量,以便为总体可靠性系数获得狭窄的置信区间。我们首先讨论综合可靠性系数,然后提供关于相应总体值置信区间形成的讨论。使用参数估计精度方法,我们开发了两种通过规划样本量来获得可靠性准确估计的方法。第一种方法提供了一种规划样本量的方法,以便总体可靠性系数的预期置信区间宽度足够窄。第二种方法确保在一定程度的保证(例如,99%的保证,即总体可靠性系数的 95%置信区间将小于 W 个单位宽)下,置信区间宽度足够窄。我们的方法通过蒙特卡罗模拟研究得到了验证。我们展示了如何使用易于使用且免费提供的软件轻松实现这些方法。