Suppr超能文献

载两性霉素 B 的双 pH 响应 PDMA-b-PDPA 胶束复合物克服内涵体屏障用于 siRNA 递送。

Overcoming endosomal barrier by amphotericin B-loaded dual pH-responsive PDMA-b-PDPA micelleplexes for siRNA delivery.

机构信息

Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA.

出版信息

ACS Nano. 2011 Nov 22;5(11):9246-55. doi: 10.1021/nn203503h. Epub 2011 Nov 1.

Abstract

The endosomal barrier is a major bottleneck for the effective intracellular delivery of siRNA by nonviral nanocarriers. Here, we report a novel amphotericin B (AmB)-loaded, dual pH-responsive micelleplex platform for siRNA delivery. Micelles were self-assembled from poly(2-(dimethylamino)ethyl methacrylate)-block-poly(2-(diisopropylamino)ethyl methacrylate) (PDMA-b-PDPA) diblock copolymers. At pH 7.4, AmB was loaded into the hydrophobic PDPA core, and siRNA was complexed with a positively charged PDMA shell to form the micelleplexes. After cellular uptake, the PDMA-b-PDPA/siRNA micelleplexes dissociated in early endosomes to release AmB. Live cell imaging studies demonstrated that released AmB significantly increased the ability of siRNA to overcome the endosomal barrier. Transfection studies showed that AmB-loaded micelleplexes resulted in significant increase in luciferase (Luc) knockdown efficiency over the AmB-free control. The enhanced Luc knockdown efficiency was abolished by bafilomycin A1, a vacuolar ATPase inhibitor that inhibits the acidification of the endocytic organelles. These data support the central hypothesis that membrane poration by AmB and increased endosomal swelling and membrane tension by a "proton sponge" polymer provided a synergistic strategy to disrupt endosomes for improved intracellular delivery of siRNA.

摘要

内涵体屏障是通过非病毒纳米载体有效实现 siRNA 细胞内递呈的主要瓶颈。在此,我们报告了一种新型两性霉素 B(AmB)负载的、双重 pH 响应性胶束复合物平台,用于 siRNA 递呈。胶束由聚[2-(二甲氨基)乙基甲基丙烯酸酯]-嵌段-聚[2-(二异丙基氨基)乙基甲基丙烯酸酯](PDMA-b-PDPA)两亲性嵌段共聚物自组装而成。在 pH 7.4 时,AmB 被载入疏水性 PDPA 内核,siRNA 与带正电荷的 PDMA 壳复合形成胶束复合物。细胞摄取后,PDMA-b-PDPA/siRNA 胶束复合物在早期内涵体中解离,释放 AmB。活细胞成像研究表明,释放的 AmB 显著提高了 siRNA 克服内涵体屏障的能力。转染研究表明,负载 AmB 的胶束复合物导致荧光素酶(Luc)的敲低效率显著高于无 AmB 对照。这种增强的 Luc 敲低效率被溶酶体 ATP 酶抑制剂巴弗洛霉素 A1 所消除,溶酶体 ATP 酶抑制剂可以抑制内吞细胞器的酸化。这些数据支持了一个中心假说,即 AmB 的膜穿孔作用和“质子海绵”聚合物引起的内涵体肿胀和膜张力增加提供了一种协同策略,以破坏内涵体,从而提高 siRNA 的细胞内递呈效率。

相似文献

2
Reversal of lung cancer multidrug resistance by pH-responsive micelleplexes mediating co-delivery of siRNA and paclitaxel.
Macromol Biosci. 2014 Jan;14(1):100-9. doi: 10.1002/mabi.201300282. Epub 2013 Aug 21.
4
Reversal of doxorubicin resistance in breast cancer by mitochondria-targeted pH-responsive micelles.
Acta Biomater. 2015 Mar;14:115-24. doi: 10.1016/j.actbio.2014.12.001. Epub 2014 Dec 9.
8
A theranostic micelleplex co-delivering SN-38 and VEGF siRNA for colorectal cancer therapy.
Biomaterials. 2016 Apr;86:92-105. doi: 10.1016/j.biomaterials.2016.01.068. Epub 2016 Feb 4.
9
Cross-linking of cationic block copolymer micelles by silica deposition.
J Am Chem Soc. 2007 Feb 14;129(6):1717-23. doi: 10.1021/ja0674946. Epub 2007 Jan 24.
10
Development of a novel endosomolytic diblock copolymer for siRNA delivery.
J Control Release. 2009 Feb 10;133(3):221-9. doi: 10.1016/j.jconrel.2008.10.004. Epub 2008 Oct 17.

引用本文的文献

1
Glycopolymeric Nanoparticles Block Breast Cancer Growth by Inhibiting Efferocytosis in the Tumor Microenvironment.
ACS Appl Nano Mater. 2024 Dec 27;7(24):28851-28863. doi: 10.1021/acsanm.4c06534. Epub 2024 Dec 16.
2
pH-responsive nano-vaccine combined with anti-PD-1 antibodies for enhanced immunotherapy of breast cancer.
Theranostics. 2025 Apr 28;15(12):6022-6043. doi: 10.7150/thno.107200. eCollection 2025.
3
Nanoparticles (NPs)-mediated lncMALAT1 silencing to reverse cisplatin resistance for effective hepatocellular carcinoma therapy.
Front Pharmacol. 2024 Jul 30;15:1437071. doi: 10.3389/fphar.2024.1437071. eCollection 2024.
5
Structural Determinants of Stimuli-Responsiveness in Amphiphilic Macromolecular Nano-assemblies.
Prog Polym Sci. 2024 Jan;148. doi: 10.1016/j.progpolymsci.2023.101765. Epub 2023 Dec 9.
7
Stimuli-Responsive Nanotechnology for RNA Delivery.
Adv Sci (Weinh). 2023 Dec;10(36):e2303597. doi: 10.1002/advs.202303597. Epub 2023 Nov 1.
9
Nucleus-specific RNAi nanoplatform for targeted regulation of nuclear lncRNA function and effective cancer therapy.
Exploration (Beijing). 2022 Jul 26;2(5):20220013. doi: 10.1002/EXP.20220013. eCollection 2022 Oct.
10
Cellular Internalization and Exiting Behavior of Zwitterionic 4-Armed Star-Shaped Polymers.
Molecules. 2023 Jun 1;28(11):4479. doi: 10.3390/molecules28114479.

本文引用的文献

1
Synthesis of folate-functionalized RAFT polymers for targeted siRNA delivery.
Biomacromolecules. 2011 Jul 11;12(7):2708-14. doi: 10.1021/bm200485b. Epub 2011 Jun 10.
2
Non-viral gene delivery nanoparticles based on poly(β-amino esters) for treatment of glioblastoma.
Biomaterials. 2011 Aug;32(23):5402-10. doi: 10.1016/j.biomaterials.2011.04.016. Epub 2011 May 4.
3
Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells.
Angew Chem Int Ed Engl. 2011 Jun 27;50(27):6109-14. doi: 10.1002/anie.201100884. Epub 2011 Apr 14.
5
Systemic delivery of siRNA to tumors using a lipid nanoparticle containing a tumor-specific cleavable PEG-lipid.
Biomaterials. 2011 Jun;32(18):4306-16. doi: 10.1016/j.biomaterials.2011.02.045. Epub 2011 Mar 22.
7
The synergistic effect of hierarchical assemblies of siRNA and chemotherapeutic drugs co-delivered into hepatic cancer cells.
Biomaterials. 2011 Mar;32(8):2222-32. doi: 10.1016/j.biomaterials.2010.11.061. Epub 2010 Dec 24.
8
RNA interference in the clinic: challenges and future directions.
Nat Rev Cancer. 2011 Jan;11(1):59-67. doi: 10.1038/nrc2966. Epub 2010 Dec 16.
10
Endosomal escape pathways for delivery of biologicals.
J Control Release. 2011 May 10;151(3):220-8. doi: 10.1016/j.jconrel.2010.11.004. Epub 2010 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验