Centro de Bioinformática y Simulación Molecular, Universidad de Talca, 2 Norte 685, Casilla 721, Talca, Chile.
J Chem Inf Model. 2011 Nov 28;51(11):2920-31. doi: 10.1021/ci200306w. Epub 2011 Oct 31.
N1 substituted pyrazole derivatives show diverse B-Raf kinase inhibitory activities when different hydroxy-substituted cycloalkyl groups are placed at this position. Docking, molecular dynamics (MD) simulations, and hybrid calculation methods (Quantum Mechanics/Molecular Mechanics (QM/MM)) were performed on the complexes, in order to explain these differences. Docking of the inhibitors showed the same orientation that X-ray crystal structure of the analogous (1E)-5-[1-(4-piperidinyl)-3-(4-pyridinyl)-1H-pyrazol-4-yl]-2,3-dihydro-1H-inden-1-one oxime. MD simulations of the most active diastereomer compounds containing cis- and trans-3-hydroxycyclohexyl substituents showed stable interactions with residue Ile463 at the entrance of the B-Raf active site. On the other hand, the less active diastereomer compounds containing cis- and trans-2-hydroxycyclopentyl substituents showed interactions with inner residues Asn580 and Ser465. We found that the differences in activity can be explained by considering the dynamic interactions between the inhibitors and their surrounding residues within the B-Raf binding site. We also explained the activity trend by using a testing scoring function derived from more reliable QM/MM calculations. In addition, we search for new inhibitors from a virtual screening carried out by fragment-based de novo design. We generated a set of approximately 200 virtual compounds, which interact with Ile463 and fulfill druglikeness properties according to Lipinski, Veber, and Ghose rules.
N1 取代的吡唑衍生物在该位置上具有不同的羟基取代的环烷基时,表现出不同的 B-Raf 激酶抑制活性。通过对接、分子动力学 (MD) 模拟和混合计算方法(量子力学/分子力学 (QM/MM))对复合物进行了研究,以解释这些差异。抑制剂的对接显示出与类似物 (1E)-5-[1-(4-哌啶基)-3-(4-吡啶基)-1H-吡唑-4-基]-2,3-二氢-1H-茚-1-酮肟的 X 射线晶体结构相同的取向。对含有顺式和反式 3-羟基环己基取代基的最活性非对映异构体化合物的 MD 模拟显示,与 B-Raf 活性位点入口处的残基 Ile463 存在稳定的相互作用。另一方面,含有顺式和反式 2-羟基环戊基取代基的活性较低的非对映异构体化合物与内部残基 Asn580 和 Ser465 相互作用。我们发现,通过考虑抑制剂与其在 B-Raf 结合位点周围残基之间的动态相互作用,可以解释活性差异。我们还使用源自更可靠 QM/MM 计算的测试评分函数来解释活性趋势。此外,我们通过基于片段的从头设计进行虚拟筛选来寻找新的抑制剂。我们生成了一组大约 200 个虚拟化合物,它们与 Ile463 相互作用,并根据 Lipinski、Veber 和 Ghose 规则满足药物性质。