Suppr超能文献

碳酸酐酶识别芳基磺酰胺类生物分子的疏水作用机制。

Mechanism of the hydrophobic effect in the biomolecular recognition of arylsulfonamides by carbonic anhydrase.

机构信息

Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.

出版信息

Proc Natl Acad Sci U S A. 2011 Nov 1;108(44):17889-94. doi: 10.1073/pnas.1114107108. Epub 2011 Oct 19.

Abstract

The hydrophobic effect--a rationalization of the insolubility of nonpolar molecules in water--is centrally important to biomolecular recognition. Despite extensive research devoted to the hydrophobic effect, its molecular mechanisms remain controversial, and there are still no reliably predictive models for its role in protein-ligand binding. Here we describe a particularly well-defined system of protein and ligands--carbonic anhydrase and a series of structurally homologous heterocyclic aromatic sulfonamides--that we use to characterize hydrophobic interactions thermodynamically and structurally. In binding to this structurally rigid protein, a set of ligands (also defined to be structurally rigid) shows the expected gain in binding free energy as hydrophobic surface area is added. Isothermal titration calorimetry demonstrates that enthalpy determines these increases in binding affinity, and that changes in the heat capacity of binding are negative. X-ray crystallography and molecular dynamics simulations are compatible with the proposal that the differences in binding between the homologous ligands stem from changes in the number and organization of water molecules localized in the active site in the bound complexes, rather than (or perhaps in addition to) release of structured water from the apposed hydrophobic surfaces. These results support the hypothesis that structured water molecules--including both the molecules of water displaced by the ligands and those reorganized upon ligand binding--determine the thermodynamics of binding of these ligands at the active site of the protein. Hydrophobic effects in various contexts have different structural and thermodynamic origins, although all may be manifestations of the differences in characteristics of bulk water and water close to hydrophobic surfaces.

摘要

疏水效应——对非极性分子在水中的不溶性的合理化解释——对生物分子识别至关重要。尽管人们对疏水效应进行了广泛的研究,但它的分子机制仍存在争议,而且对于其在蛋白质-配体结合中的作用仍然没有可靠的预测模型。在这里,我们描述了一个特别明确的蛋白质和配体系统——碳酸酐酶和一系列结构同源的杂环芳族磺酰胺——我们用它来从热力学和结构上表征疏水相互作用。在与这种结构刚性的蛋白质结合时,一组配体(也被定义为结构刚性)随着疏水表面积的增加,表现出预期的结合自由能增加。等温滴定量热法表明,焓决定了这些结合亲和力的增加,并且结合热容量的变化是负的。X 射线晶体学和分子动力学模拟与以下假设一致,即同源配体之间的结合差异源于结合部位定位的水分子数量和组织的变化,而不是(或者可能除了)从相邻的疏水面释放结构水。这些结果支持了这样的假设,即结构水分子——包括被配体取代的水分子和配体结合后重新组织的水分子——决定了这些配体在蛋白质活性部位的结合热力学。尽管所有这些疏水效应都可能是水的特性与靠近疏水表面的水的特性差异的表现,但在不同的情况下,疏水效应具有不同的结构和热力学起源。

相似文献

1
Mechanism of the hydrophobic effect in the biomolecular recognition of arylsulfonamides by carbonic anhydrase.
Proc Natl Acad Sci U S A. 2011 Nov 1;108(44):17889-94. doi: 10.1073/pnas.1114107108. Epub 2011 Oct 19.
2
Fluoroalkyl and alkyl chains have similar hydrophobicities in binding to the "hydrophobic wall" of carbonic anhydrase.
J Am Chem Soc. 2011 Sep 7;133(35):14017-26. doi: 10.1021/ja2045293. Epub 2011 Aug 15.
3
Water networks contribute to enthalpy/entropy compensation in protein-ligand binding.
J Am Chem Soc. 2013 Oct 16;135(41):15579-84. doi: 10.1021/ja4075776. Epub 2013 Oct 3.
4
The binding of benzoarylsulfonamide ligands to human carbonic anhydrase is insensitive to formal fluorination of the ligand.
Angew Chem Int Ed Engl. 2013 Jul 22;52(30):7714-7. doi: 10.1002/anie.201301813. Epub 2013 Jun 20.
8
Intrinsic thermodynamics of trifluoromethanesulfonamide and ethoxzolamide binding to human carbonic anhydrase VII.
J Mol Recognit. 2015 Mar;28(3):166-72. doi: 10.1002/jmr.2404. Epub 2015 Feb 3.
9
Characterization of human carbonic anhydrase XII stability and inhibitor binding.
Bioorg Med Chem. 2013 Mar 15;21(6):1431-6. doi: 10.1016/j.bmc.2012.10.016. Epub 2012 Oct 27.
10
Increasing binding constants of ligands to carbonic anhydrase by using "greasy tails".
J Med Chem. 1995 Jun 23;38(13):2292-301. doi: 10.1021/jm00013a005.

引用本文的文献

1
Aromatic Wall Extension of Glycoluril-Derived Molecular Clips Enhances Binding of Planar Aromatic Dyes.
Chemistry. 2025 Sep 5;31(50):e02177. doi: 10.1002/chem.202502177. Epub 2025 Aug 18.
2
Affinity and Selectivity of Protein-Ligand Recognition: A Minor Chemical Modification Changes Carbonic Anhydrase Binding Profile.
J Med Chem. 2025 Aug 28;68(16):17752-17773. doi: 10.1021/acs.jmedchem.5c01421. Epub 2025 Aug 13.
3
Investigating the Nature of PRM:SH3 Interactions Using Artificial Intelligence and Molecular Dynamics.
J Chem Inf Model. 2025 Jun 9;65(11):5662-5671. doi: 10.1021/acs.jcim.5c00342. Epub 2025 May 19.
4
5
Effect of Water Networks On Ligand Binding: Computational Predictions vs Experiments.
J Chem Inf Model. 2024 Dec 9;64(23):8980-8998. doi: 10.1021/acs.jcim.4c01291. Epub 2024 Nov 22.
6
Solvation free energy in governing equations for DNA hybridization, protein-ligand binding, and protein folding.
FEBS Open Bio. 2024 Nov;14(11):1837-1850. doi: 10.1002/2211-5463.13897. Epub 2024 Sep 17.
7
Accelerating Alchemical Free Energy Prediction Using a Multistate Method: Application to Multiple Kinases.
J Chem Inf Model. 2023 Nov 27;63(22):7133-7147. doi: 10.1021/acs.jcim.3c01469. Epub 2023 Nov 10.
8
The temperature-dependence of host-guest binding thermodynamics: experimental and simulation studies.
Chem Sci. 2023 Oct 13;14(42):11818-11829. doi: 10.1039/d3sc01975f. eCollection 2023 Nov 1.
10
Second-Shell Residues Contribute to Catalysis by Predominately Preorganizing the Apo State in PafA.
J Am Chem Soc. 2023 May 24;145(20):11333-11347. doi: 10.1021/jacs.3c02423. Epub 2023 May 12.

本文引用的文献

1
Isothermal titration calorimetry: controlling binding forces in lead optimization.
Drug Discov Today Technol. 2004 Dec;1(3):295-9. doi: 10.1016/j.ddtec.2004.11.016.
2
Fluoroalkyl and alkyl chains have similar hydrophobicities in binding to the "hydrophobic wall" of carbonic anhydrase.
J Am Chem Soc. 2011 Sep 7;133(35):14017-26. doi: 10.1021/ja2045293. Epub 2011 Aug 15.
3
Aromatic rings in chemical and biological recognition: energetics and structures.
Angew Chem Int Ed Engl. 2011 May 16;50(21):4808-42. doi: 10.1002/anie.201007560. Epub 2011 Apr 28.
5
Ligand binding to protein-binding pockets with wet and dry regions.
Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1326-30. doi: 10.1073/pnas.1016793108. Epub 2011 Jan 4.
6
How Can Hydrophobic Association Be Enthalpy Driven?
J Chem Theory Comput. 2010 Sep 14;6(9):2866-2871. doi: 10.1021/ct1003077. Epub 2010 Aug 24.
9
The thermodynamics of protein-ligand interaction and solvation: insights for ligand design.
J Mol Biol. 2008 Dec 26;384(4):1002-17. doi: 10.1016/j.jmb.2008.09.073. Epub 2008 Oct 9.
10
Characterization of vibrational resonances of water-vapor interfaces by phase-sensitive sum-frequency spectroscopy.
Phys Rev Lett. 2008 Mar 7;100(9):096102. doi: 10.1103/PhysRevLett.100.096102. Epub 2008 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验