Lindqvist Per, Söderberg Stefan, Gonzalez Manuel C, Tossavainen Erik, Henein Michael Y
Department of Cardiology, Umeå University, Umeå, Sweden.
Eur J Echocardiogr. 2011 Dec;12(12):961-6. doi: 10.1093/ejechocard/jer222. Epub 2011 Oct 19.
Pulmonary vascular resistance (PVR) is an important measurement for the diagnosis of patients with pulmonary hypertension (PH) but needs accurate determination of mean pulmonary artery pressure (PAMP). We aimed to test the accuracy of a Doppler-derived measurement of PVR, using the conventional invasive equation in patients with PH.
We investigated 30 patients undergoing right heart catheterization (RHC), mean age 62 ± 13 years, 21 females, with different diseases; idiopathic pulmonary arterial hypertension (PAH) (n = 5), associated PAH (n = 16), chronic thromboembolic PH (n = 6), interstitial lung disease (n = 2), and after closure of an atrial septal defect (n = 1). Patients with impaired left ventricular systolic function (EF < 50%) or elevated pulmonary capillary wedge pressure (PCWP >15 mmHg on RHC) were excluded. We used the formula: PAMP = PASP(echo) × 0.61 + 2 mmHg, where PASP(echo) is the peak tricuspid regurgitation pressure drop + 10 or 7 mmHg. Pulmonary vascular resistance was then calculated as PAMP(echo)- PCWP/cardiac output. Pulmonary capillary wedge pressure was estimated at 10 mmHg in all cases. The Doppler-derived estimation of PVR(echo) was achievable in 90% of patients, in whom accurate calculation of PAMP was obtainable. Pulmonary vascular resistance echo individual values strongly correlated with those from RHC (r = 0.85, P < 0.001 and r = 0.87, P < 0.001 for the two estimated values for right atrial pressure, respectively). The regression equation using this formula was PVR(rhc) = 0.95 × PVR(echo)- 0.29, and the regression line was close to identity. The Bland-Altman plot showed a good agreement between PVR(echo) and PVR(rhc) values, with a mean difference of -0.66 ± 2.1 Wood unit.
The proposed Doppler-derived formula for estimating PVR based on the conventionally used invasive equation strongly correlates with invasive gold standard measures.
肺血管阻力(PVR)是诊断肺动脉高压(PH)患者的一项重要指标,但需要准确测定平均肺动脉压(PAMP)。我们旨在使用传统的侵入性公式,测试多普勒衍生的PVR测量方法在PH患者中的准确性。
我们研究了30例行右心导管检查(RHC)的患者,平均年龄62±13岁,女性21例,患有不同疾病;特发性肺动脉高压(PAH)(n = 5)、相关性PAH(n = 16)、慢性血栓栓塞性PH(n = 6)、间质性肺疾病(n = 2)以及房间隔缺损封堵术后(n = 1)。排除左心室收缩功能受损(射血分数<50%)或肺毛细血管楔压升高(RHC时PCWP>15 mmHg)的患者。我们使用公式:PAMP = PASP(回声)×0.61 + 2 mmHg,其中PASP(回声)是三尖瓣反流峰值压力降 + 10或7 mmHg。然后将肺血管阻力计算为PAMP(回声)-PCWP/心输出量。所有病例中肺毛细血管楔压估计为10 mmHg。90%的患者可实现多普勒衍生的PVR(回声)估计,其中可获得PAMP的准确计算值。肺血管阻力回声个体值与RHC测得的值高度相关(右心房压力的两个估计值分别为r = 0.85,P < 0.001和r = 0.87,P < 0.001)。使用该公式的回归方程为PVR(rhc) = 0.95×PVR(回声)-0.29,回归线接近恒等线。Bland-Altman图显示PVR(回声)和PVR(rhc)值之间具有良好的一致性,平均差值为-0.66±2.1伍德单位。
基于传统侵入性公式提出的用于估计PVR的多普勒衍生公式与侵入性金标准测量方法高度相关。