Suppr超能文献

在微流控生物反应器中肾小管上皮细胞对白蛋白的处理。

Albumin handling by renal tubular epithelial cells in a microfluidic bioreactor.

机构信息

Department of Biomedical Engineering, Cleveland Clinic, 9500 Euclid Ave. ND 20, Cleveland, Ohio 44195, USA.

出版信息

Biotechnol Bioeng. 2012 Mar;109(3):797-803. doi: 10.1002/bit.24339. Epub 2011 Nov 10.

Abstract

Epithelial cells in the proximal tubule of the kidney reclaim and metabolize protein from the glomerular filtrate. Proteinuria, an overabundance of protein in the urine, affects tubular cell function and is a major factor in the progression of chronic kidney disease. By developing experimental systems to study tubular protein handling in a setting that simulates some of the environmental conditions of the kidney tubule in vivo, we can better understand how microenviromental conditions affect cellular protein handling to determine if these conditions are relevant in disease. To this end, we used two in vitro microfluidic models to evaluate albumin handling by renal proximal tubule cells. For the first system, cells were grown in a microfluidic channel and perfused with physiological levels of shear stress to evaluate the effect of mechanical stress on protein uptake. In the second system, a porous membrane was used to separate an apical and basolateral compartment to evaluate the fate of protein following cellular metabolism. Opossum kidney (OK) epithelial cells were exposed to fluorescently labeled albumin, and cellular uptake was determined by measuring the fluorescence of cell lysates. Confocal fluorescence microscopy was used to compare uptake in cells grown under flow and static conditions. Albumin processed by the cells was examined by size exclusion chromatography (SEC) and SDS-PAGE. Results showed that cellular uptake and/or degradation was significantly increased in cells exposed to flow compared to static conditions. This was confirmed by confocal microscopy. Size exclusion chromatography and SDS-PAGE showed that albumin was broken down into small molecular weight fragments and excreted by the cells. No trace of intact albumin was detectable by either SEC or SDS-PAGE. These results indicate that fluid shear stress is an important factor mediating cellular protein handling, and the microfluidic bioreactor provides a novel tool to investigate this process.

摘要

肾脏近端小管中的上皮细胞从肾小球滤过液中回收和代谢蛋白质。蛋白尿是尿液中蛋白质过多的一种表现,会影响管状细胞的功能,是慢性肾脏病进展的主要因素。通过开发实验系统来研究在模拟体内肾小管某些环境条件的环境中肾小管的蛋白质处理,可以更好地了解微环境条件如何影响细胞蛋白质处理,以确定这些条件在疾病中是否相关。为此,我们使用了两种体外微流控模型来评估肾近端小管细胞对白蛋白的处理。对于第一个系统,细胞在微流控通道中生长,并灌注生理水平的剪切力,以评估机械应激对蛋白质摄取的影响。在第二个系统中,使用多孔膜将顶侧和基底外侧隔室分开,以评估细胞代谢后蛋白质的命运。我们用荧光标记的白蛋白处理袋状肾(OK)上皮细胞,并通过测量细胞裂解物的荧光来确定细胞摄取量。共聚焦荧光显微镜用于比较在流动和静态条件下生长的细胞的摄取情况。通过尺寸排阻色谱(SEC)和 SDS-PAGE 检查细胞处理的白蛋白。结果表明,与静态条件相比,暴露于流动条件下的细胞的摄取和/或降解显著增加。这一点通过共聚焦显微镜得到了证实。SEC 和 SDS-PAGE 显示白蛋白被分解成小分子量片段并被细胞排出。无论是 SEC 还是 SDS-PAGE 都无法检测到完整白蛋白的痕迹。这些结果表明,流体剪切力是调节细胞蛋白质处理的重要因素,而微流控生物反应器提供了一种研究该过程的新工具。

相似文献

引用本文的文献

本文引用的文献

10
Renal tubule albumin transport.肾小管白蛋白转运。
Annu Rev Physiol. 2005;67:573-94. doi: 10.1146/annurev.physiol.67.031103.154845.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验