Duan Yi, Gotoh Nanami, Yan Qingshang, Du Zhaopeng, Weinstein Alan M, Wang Tong, Weinbaum Sheldon
Department of Cellular and Molecular Physiology, Yale University, 333 Cedar Street, New Haven, CT 06520, USA.
Proc Natl Acad Sci U S A. 2008 Aug 12;105(32):11418-23. doi: 10.1073/pnas.0804954105. Epub 2008 Aug 6.
In this study, we demonstrate that fluid shear stress (FSS)-induced actin cytoskeletal reorganization and junctional formation in renal epithelial cells are nearly completely opposite the corresponding changes in vascular endothelial cells (ECs) [Thi MM et al. (2004) Proc Natl Acad Sci USA 101:16483-16488]. Mouse proximal tubule cells (PTCs) were subjected to 5 h of FSS (1 dyn/cm(2)) to investigate the dynamic responses of the cytoskeletal distribution of filamentous actin (F-actin), ZO-1, E-cadherin, vinculin, and paxillin to FSS. Immunofluorescence analysis revealed that FSS caused basal stress fiber disruption, more densely distributed peripheral actin bands (DPABs), and the formation of both tight junctions (TJs) and adherens junctions (AJs). A dramatic reinforcement of vinculin staining was found at the cell borders as well as the cell interior. These responses were abrogated by the actin-disrupting drug, cytochalasin D. To interpret these results, we propose a "junctional buttressing" model for PTCs in which FSS enables the DPABs, TJs, and AJs to become more tightly connected. In contrast, in the "bumper-car" model for ECs, all junctional connections were severely disrupted by FSS. This "junctional buttressing" model explains why a FSS of only 1/10 of that used in the EC study can cause a similarly dramatic, cytoskeletal response in these tall, cuboidal epithelial cells; and why junctional buttressing between adjacent cells may benefit renal epithelium in maximizing flow-activated, brush border-dependent, transcellular salt and water reabsorption.
在本研究中,我们证明了流体剪切应力(FSS)诱导的肾上皮细胞中肌动蛋白细胞骨架重组和连接形成与血管内皮细胞(ECs)中的相应变化几乎完全相反[Thi MM等人(2004年)《美国国家科学院院刊》101:16483 - 16488]。将小鼠近端小管细胞(PTCs)置于FSS(1达因/平方厘米)作用5小时,以研究丝状肌动蛋白(F - 肌动蛋白)、紧密连接蛋白1(ZO - 1)、E - 钙黏蛋白、纽蛋白和桩蛋白的细胞骨架分布对FSS的动态反应。免疫荧光分析显示,FSS导致基底应力纤维破坏、外周肌动蛋白带(DPABs)分布更密集,以及紧密连接(TJs)和黏附连接(AJs)的形成。在细胞边界以及细胞内部发现纽蛋白染色显著增强。这些反应被肌动蛋白破坏药物细胞松弛素D消除。为了解释这些结果,我们提出了一个针对PTCs的“连接支撑”模型,其中FSS使DPABs、TJs和AJs连接得更紧密。相比之下,在ECs的“碰碰车”模型中,所有连接都被FSS严重破坏。这个“连接支撑”模型解释了为什么在EC研究中使用的FSS的1/10就能在这些高柱状立方上皮细胞中引起类似的、显著的细胞骨架反应;以及为什么相邻细胞之间的连接支撑可能有利于肾上皮细胞最大限度地进行流动激活的、依赖刷状缘的跨细胞盐和水重吸收。