Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany.
Chembiochem. 2011 Nov 25;12(17):2599-607. doi: 10.1002/cbic.201100527. Epub 2011 Oct 19.
Phosphorylation of protein kinases is a central mechanism involved in numerous cellular regulatory circuits, both in prokaryotic and eukaryotic cells. An understanding of the structural and functional consequences of protein phosphorylation is of considerable importance for the design of selective, small-molecule kinase inhibitors. NMR spectroscopy is a central method to support structure-based drug design. Here, we present the NMR assignment of the activated p38α kinase and compare it to the NMR assignment of unphosphorylated p38α. Conformational changes in solution induced by activation can be located to the activation loop, an adjacent loop, and an insert part of the polypeptide chain that is specific for the family of mitogen-activated kinases. Deuterium-exchange experiments additionally revealed differences in exchange behavior for two residues in an alanine-rich helix-loop motif that becomes more flexible upon binding of an ATP analogue and a substrate peptide.
蛋白质激酶的磷酸化是参与原核和真核细胞中众多细胞调节回路的核心机制。了解蛋白质磷酸化的结构和功能后果对于设计选择性小分子激酶抑制剂具有重要意义。NMR 光谱是支持基于结构的药物设计的核心方法。在这里,我们展示了激活的 p38α 激酶的 NMR 分配,并将其与未磷酸化的 p38α 的 NMR 分配进行了比较。通过激活诱导的溶液构象变化可定位到激活环、相邻环以及特定丝裂原激活的蛋白激酶家族的多肽链插入部分。氘交换实验还揭示了在富含丙氨酸的螺旋环模体中的两个残基的交换行为的差异,该模体在结合 ATP 类似物和底物肽后变得更加灵活。