Department of Molecular and Cell Biology and The Cancer Research Laboratory, University of California at Berkeley, Berkeley, California 94720-3200, USA.
Mol Carcinog. 2012 Nov;51(11):881-94. doi: 10.1002/mc.20857. Epub 2011 Oct 19.
Elastase is the only currently identified target protein for indole-3-carbinol (I3C), a naturally occurring hydrolysis product of glucobrassicin in cruciferous vegetables such as broccoli, cabbage, and Brussels sprouts that induces a cell cycle arrest and apoptosis of human breast cancer cells. In vitro elastase enzymatic assays demonstrated that I3C and at lower concentrations its more potent derivative 1-benzyl-indole-3-carbinol (1-benzyl-I3C) act as non-competitive allosteric inhibitors of elastase activity. Consistent with these results, in silico computational simulations have revealed the first predicted interactions of I3C and 1-benzyl-I3C with the crystal structure of human neutrophil elastase, and identified a potential binding cluster on an external surface of the protease outside of the catalytic site that implicates elastase as a target protein for both indolecarbinol compounds. The Δ205 carboxyterminal truncation of elastase, which disrupts the predicted indolecarbinol binding site, is enzymatically active and generates a novel I3C resistant enzyme. Expression of the wild type and Δ205 elastase in MDA-MB-231 human breast cancer cells demonstrated that the carboxyterminal domain of elastase is required for the I3C and 1-benzyl-I3C inhibition of enzymatic activity, accumulation of the unprocessed form of the CD40 elastase substrate (a tumor necrosis factor receptor family member), disruption of NFκB nuclear localization and transcriptional activity, and induction of a G1 cell cycle arrest. Surprisingly, expression of the Δ205 elastase molecule failed to reverse indolecarbinol stimulated apoptosis, establishing an elastase-dependent bifurcation point in anti-proliferative signaling that uncouples the cell cycle and apoptotic responses in human breast cancer cells.
弹性蛋白酶是吲哚-3-甲醇(I3C)唯一的目前确定的靶蛋白,I3C 是十字花科蔬菜如西兰花、卷心菜和抱子甘蓝中葡萄糖异硫氰酸盐的天然水解产物,能诱导人乳腺癌细胞的细胞周期停滞和细胞凋亡。体外弹性蛋白酶酶促测定表明,I3C 及其更有效的衍生物 1-苄基-吲哚-3-甲醇(1-苄基-I3C)在较低浓度下作为弹性蛋白酶活性的非竞争性变构抑制剂起作用。与这些结果一致,计算机模拟计算揭示了 I3C 和 1-苄基-I3C 与人类中性粒细胞弹性蛋白酶晶体结构的首次预测相互作用,并确定了蛋白酶外表面催化部位之外的潜在结合簇,这表明弹性蛋白酶是这两种吲哚卡宾化合物的靶蛋白。弹性蛋白酶的 Δ205 羧基末端截断破坏了预测的吲哚卡宾结合位点,具有酶活性,并产生了一种新型的 I3C 抗性酶。野生型和 Δ205 弹性蛋白酶在 MDA-MB-231 人乳腺癌细胞中的表达表明,弹性蛋白酶的羧基末端结构域是 I3C 和 1-苄基-I3C 抑制酶活性、积累未加工形式的 CD40 弹性蛋白酶底物(肿瘤坏死因子受体家族成员)、破坏 NFκB 核定位和转录活性以及诱导 G1 细胞周期停滞所必需的。令人惊讶的是,Δ205 弹性蛋白酶分子的表达未能逆转吲哚卡宾刺激的细胞凋亡,这在抗增殖信号中建立了一个依赖弹性蛋白酶的分支点,使人类乳腺癌细胞中的细胞周期和凋亡反应解耦。