Suppr超能文献

建立一种通过与原发性人类癌症的分子相似性来选择具有临床相关性的癌症细胞系进行研究的框架。

A framework to select clinically relevant cancer cell lines for investigation by establishing their molecular similarity with primary human cancers.

机构信息

Department of Surgery, University of Colorado, Aurora, Colorado, USA.

出版信息

Cancer Res. 2011 Dec 15;71(24):7398-409. doi: 10.1158/0008-5472.CAN-11-2427. Epub 2011 Oct 19.

Abstract

Experimental work on human cancer cell lines often does not translate to the clinic. We posit that this is because some cells undergo changes in vitro that no longer make them representative of human tumors. Here, we describe a novel alignment method named Spearman's rank correlation classification method (SRCCM) that measures similarity between cancer cell lines and human tumors via gene expression profiles, for the purpose of selecting lines that are biologically relevant. To show utility, we used SRCCM to assess similarity of 36 bladder cancer lines with 10 epithelial human tumor types (N = 1,630 samples) and with bladder tumors of different stages and grades (N = 144 samples). Although 34 of 36 lines aligned to bladder tumors rather than other histologies, only 16 of 28 had SRCCM assigned grades identical to that of their original source tumors. To evaluate the clinical relevance of this approach, we show that gene expression profiles of aligned cell lines stratify survival in an independent cohort of 87 bladder patients (HR = 3.41, log-rank P = 0.0077) whereas unaligned cell lines using original tumor grades did not. We repeated this process on 22 colorectal cell lines and found that gene expression profiles of 17 lines aligning to colorectal tumors and selected based on their similarity with 55 human tumors stratified survival in an independent cohort of 177 colorectal cancer patients (HR = 2.35, log-rank P = 0.0019). By selecting cell lines that reflect human tumors, our technique promises to improve the clinical translation of laboratory investigations in cancer.

摘要

在人类癌细胞系上进行的实验工作往往不能转化为临床实践。我们假设这是因为一些细胞在体外发生了变化,不再代表人类肿瘤。在这里,我们描述了一种名为斯皮尔曼等级相关分类法(SRCCM)的新型对齐方法,该方法通过基因表达谱来衡量癌细胞系与人类肿瘤之间的相似性,目的是选择具有生物学相关性的细胞系。为了展示其实用性,我们使用 SRCCM 评估了 36 条膀胱癌系与 10 种上皮人类肿瘤类型(N = 1630 个样本)以及不同阶段和分级的膀胱癌(N = 144 个样本)之间的相似性。尽管 36 条线中的 34 条与膀胱癌而非其他组织学类型对齐,但只有 28 条中的 16 条具有 SRCCM 分配的等级与原始来源肿瘤的等级相同。为了评估这种方法的临床相关性,我们表明,对齐细胞系的基因表达谱可对 87 名膀胱癌患者的独立队列进行分层(HR = 3.41,对数秩 P = 0.0077),而使用原始肿瘤等级的未对齐细胞系则不能。我们在 22 条结直肠癌细胞系上重复了这个过程,发现 17 条与结直肠肿瘤对齐的细胞系的基因表达谱根据其与 55 个人类肿瘤的相似性选择,可对 177 名结直肠癌患者的独立队列进行分层(HR = 2.35,对数秩 P = 0.0019)。通过选择反映人类肿瘤的细胞系,我们的技术有望提高癌症实验室研究的临床转化。

相似文献

引用本文的文献

2
CNpare: matching DNA copy number profiles.CNpare:匹配 DNA 拷贝数谱。
Bioinformatics. 2022 Jul 11;38(14):3638-3641. doi: 10.1093/bioinformatics/btac371.
5
An Osteopontin/CD44 Axis in RhoGDI2-Mediated Metastasis Suppression.RhoGDI2介导的转移抑制中的骨桥蛋白/CD44轴
Cancer Cell. 2016 Sep 12;30(3):432-443. doi: 10.1016/j.ccell.2016.08.002. Epub 2016 Sep 1.
7
GON4L Drives Cancer Growth through a YY1-Androgen Receptor-CD24 Axis.GON4L通过YY1-雄激素受体-CD24轴驱动癌症生长。
Cancer Res. 2016 Sep 1;76(17):5175-85. doi: 10.1158/0008-5472.CAN-16-1099. Epub 2016 Jun 16.

本文引用的文献

6
Cell line misidentification: the beginning of the end.细胞系鉴定错误:一切的开端。
Nat Rev Cancer. 2010 Jun;10(6):441-8. doi: 10.1038/nrc2852. Epub 2010 May 7.
8
Molecular target class is predictive of in vitro response profile.分子靶标类别可预测体外反应谱。
Cancer Res. 2010 May 1;70(9):3677-86. doi: 10.1158/0008-5472.CAN-09-3788. Epub 2010 Apr 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验