Suppr超能文献

通过丛枝菌根真菌抑制真菌和线虫植物病原体。

Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi.

机构信息

Institut für Biologie, Freie Universität Berlin, Berlin, Germany.

出版信息

Biol Lett. 2012 Apr 23;8(2):214-7. doi: 10.1098/rsbl.2011.0874. Epub 2011 Oct 19.

Abstract

Arbuscular mycorrhizal (AM) fungi represent ubiquitous mutualists of terrestrial plants. Through the symbiosis, plant hosts, among other benefits, receive protection from pathogens. A meta-analysis was conducted on 106 articles to determine whether, following pathogen infection of AM-colonized plants, the identity of the organisms involved (pathogens, AM fungi and host plants) had implications for the extent of the AM-induced pathogen suppression. Data on fungal and nematode pathogens were analysed separately. Although we found no differences in AM effectiveness with respect to the identity of the plant pathogen, the identity of the AM isolate had a dramatic effect on the level of pathogen protection. AM efficiency differences with respect to nematode pathogens were mainly limited to the number of AM isolates present; by contrast, modification of the ability to suppress fungal pathogens could occur even through changing the identity of the Glomeraceae isolate applied. N-fixing plants received more protection from fungal pathogens than non-N-fixing dicotyledons; this was attributed to the more intense AM colonization in N-fixing plants. Results have implications for understanding mycorrhizal ecology and agronomic applications.

摘要

丛枝菌根(AM)真菌是陆地植物普遍存在的共生体。通过共生,植物宿主除了其他好处外,还能免受病原体的侵害。对 106 篇文章进行了荟萃分析,以确定在 AM 定殖植物受到病原体感染后,所涉及的生物体(病原体、AM 真菌和宿主植物)的身份是否会影响 AM 诱导的病原体抑制程度。真菌和线虫病原体的数据分别进行了分析。尽管我们没有发现 AM 有效性与植物病原体的身份有关,但 AM 分离株的身份对病原体保护水平有显著影响。AM 对线虫病原体的效率差异主要限于存在的 AM 分离株数量;相比之下,即使改变应用的球囊霉科分离株的身份,也可能改变抑制真菌病原体的能力。固氮植物比非固氮双子叶植物受到真菌病原体的保护更多;这归因于固氮植物中更强烈的 AM 定殖。研究结果对于理解菌根生态学和农业应用具有重要意义。

相似文献

1
Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi.
Biol Lett. 2012 Apr 23;8(2):214-7. doi: 10.1098/rsbl.2011.0874. Epub 2011 Oct 19.
3
Diet of Arbuscular Mycorrhizal Fungi: Bread and Butter?
Trends Plant Sci. 2017 Aug;22(8):652-660. doi: 10.1016/j.tplants.2017.05.008. Epub 2017 Jun 13.
4
Polyphony in the rhizosphere: presymbiotic communication in arbuscular mycorrhizal symbiosis.
Curr Opin Plant Biol. 2013 Aug;16(4):473-9. doi: 10.1016/j.pbi.2013.06.005. Epub 2013 Jul 5.
5
Arbuscular mycorrhizal fungal communities with contrasting life-history traits influence host nutrient acquisition.
Mycorrhiza. 2023 Mar;33(1-2):1-14. doi: 10.1007/s00572-022-01098-x. Epub 2023 Jan 3.
6
A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi.
Ecol Lett. 2010 Mar;13(3):394-407. doi: 10.1111/j.1461-0248.2009.01430.x. Epub 2010 Jan 19.
7
The Mutualistic Interaction between Plants and Arbuscular Mycorrhizal Fungi.
Microbiol Spectr. 2016 Dec;4(6). doi: 10.1128/microbiolspec.FUNK-0012-2016.
9
Trade-offs between arbuscular mycorrhizal fungal competitive ability and host growth promotion in Plantago lanceolata.
Oecologia. 2009 Jul;160(4):807-16. doi: 10.1007/s00442-009-1345-6. Epub 2009 Apr 18.
10
Arbuscular mycorrhizal dialogues: do you speak 'plantish' or 'fungish'?
Trends Plant Sci. 2015 Mar;20(3):150-4. doi: 10.1016/j.tplants.2014.12.002. Epub 2015 Jan 9.

引用本文的文献

2
Untargeted metabolomics reveals novel metabolites in Lotus japonicus roots during arbuscular mycorrhiza symbiosis.
New Phytol. 2025 May;246(3):1256-1275. doi: 10.1111/nph.70051. Epub 2025 Mar 17.
4
The reduction of abiotic stress in food crops through climate-smart mycorrhiza-enriched biofertilizer.
AIMS Microbiol. 2024 Aug 21;10(3):674-693. doi: 10.3934/microbiol.2024031. eCollection 2024.
5
Soil microbial community response to ectomycorrhizal dominance in diverse neotropical montane forests.
Mycorrhiza. 2024 Apr;34(1-2):95-105. doi: 10.1007/s00572-023-01134-4. Epub 2024 Jan 6.
6
8
Arbuscular mycorrhizae influence raspberry growth and soil fertility under conventional and organic fertilization.
Front Microbiol. 2023 May 16;14:1083319. doi: 10.3389/fmicb.2023.1083319. eCollection 2023.
9
Sustainable strategies for management of the "false root-knot nematode" spp.
Front Plant Sci. 2022 Nov 25;13:1046315. doi: 10.3389/fpls.2022.1046315. eCollection 2022.

本文引用的文献

2
A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi.
Ecol Lett. 2010 Mar;13(3):394-407. doi: 10.1111/j.1461-0248.2009.01430.x. Epub 2010 Jan 19.
3
AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect.
Mycorrhiza. 2008 Jul;18(5):251-256. doi: 10.1007/s00572-008-0173-6. Epub 2008 Apr 5.
4
Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi?
New Phytol. 2008;177(3):779-789. doi: 10.1111/j.1469-8137.2007.02294.x. Epub 2007 Nov 27.
6
Influence of phylogeny on fungal community assembly and ecosystem functioning.
Science. 2007 Jun 22;316(5832):1746-8. doi: 10.1126/science.1143082.
7
Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria.
New Phytol. 2006;169(4):829-40. doi: 10.1111/j.1469-8137.2005.01602.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验