Suppr超能文献

用于研究微生物表面的生物物理方法。

Biophysical methods for the study of microbial surfaces.

机构信息

Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil.

出版信息

Front Microbiol. 2011 Oct 10;2:207. doi: 10.3389/fmicb.2011.00207. eCollection 2011.

Abstract

The challenge in studying the surface architecture of different microbial pathogens is to integrate the most current biochemical, spectroscopic, microscopic, and processing techniques. Individually these methods have insufficient sensitivity to reveal complex structures, such as branched, large, viscous polymers with a high structure hydration, size, and complexity. However, when used in combination biophysical techniques are our primary source of information for understanding polydisperse molecules and complex microbial surfaces. Biophysical methods seek to explain biological function in terms of the molecular structures and properties of specific molecules. The sizes of the molecules found in microbial surfaces vary greatly from small fatty acids and sugars to macromolecules like proteins, polysaccharides, and pigments, such as melanin. These molecules, which comprise the building blocks of living organisms, assemble into cells, tissues, and whole organisms by forming complex individual structures with dimensions from 10 to 10,000 nm and larger. Biophysics is directed to determining the structure of specific biological molecules and of the larger structures into which they assemble. Some of this effort involves developing new methods, adapting old methods and building new instruments for viewing these structures. The description of biophysical properties in an experimental model where, properties such as flexibility, hydrodynamic characteristics, and size can be precisely determined is of great relevance to study the affinity of the surfaces with biologically active and inert substrates and the interaction with host molecules. Furthermore, this knowledge could establish the abilities of different molecules and their structures to differentially activate cellular responses. Recent studies in the fungal pathogen Cryptococcus neoformans have demonstrated that the physical properties of its unique polysaccharide capsule correlate with the biological functions associated with the intact capsule and the components comprising the capsule. In this review, we describe the application of biophysical techniques to study and characterize this highly hydrated and fragile fungal surface structure.

摘要

研究不同微生物病原体表面结构的挑战在于整合最先进的生化、光谱、显微镜和处理技术。这些方法各自的灵敏度都不足以揭示复杂的结构,例如分支的、大的、粘性的聚合物,其具有高结构水合作用、大小和复杂性。然而,当生物物理技术结合使用时,它们是我们理解多分散分子和复杂微生物表面的主要信息来源。生物物理方法试图根据特定分子的分子结构和特性来解释生物功能。微生物表面中发现的分子大小差异很大,从小的脂肪酸和糖到大分子如蛋白质、多糖和色素(如黑色素)。这些分子构成了生物体的构建块,通过形成从 10 到 10000nm 及更大的尺寸的复杂单个结构,组装成细胞、组织和整个生物体。生物物理学致力于确定特定生物分子的结构以及它们组装成的更大结构。其中一些努力涉及开发新方法、改编旧方法和构建用于观察这些结构的新仪器。在实验模型中描述生物物理性质,其中可以精确确定灵活性、流体动力学特性和大小等性质,对于研究表面与生物活性和惰性底物的亲和力以及与宿主分子的相互作用非常重要。此外,这些知识可以确定不同分子及其结构激活细胞反应的能力。最近对真菌病原体新型隐球菌的研究表明,其独特多糖荚膜的物理性质与其完整荚膜和构成荚膜的成分相关的生物学功能相关。在这篇综述中,我们描述了生物物理技术在研究和表征这种高度水合和脆弱的真菌表面结构中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a29/3189542/4749d0644b4d/fmicb-02-00207-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验