Department of Environmental Geosciences, University of Vienna, Althanstrasse 14, Vienna 1090, Austria.
Environ Sci Technol. 2011 Dec 1;45(23):10045-52. doi: 10.1021/es2023225. Epub 2011 Oct 31.
Engineered nanoparticles (ENPs) from industrial applications and consumer products are already being released into the environment. Their distribution within the environment is, among other factors, determined by the dispersion state and aggregation behavior of the nanoparticles and, in turn, directly affects the exposure of aquatic organisms to EPNs. The aggregation behavior (or colloidal stability) of these particles is controlled by the water chemistry and, to a large extent, by the surface chemistry of the particles. This paper presents results from extensive colloidal stability tests on commercially relevant titanium dioxide nanoparticles (Evonik P25) in well-controlled synthetic waters covering a wide range of pH values and water chemistries, and also in standard synthetic (EPA) waters and natural waters. The results demonstrate in detail the dependency of TiO(2) aggregation on the ionic strength of the solution, the presence of relevant monovalent and divalent ions, the presence and copresence of natural organic matter (NOM), and of course the pH of the solution. Specific interactions of both NOM and divalent ions with the TiO(2) surfaces modify the chemistry of these surfaces resulting in unexpected behavior. Results from matrix testing in well-controlled batch systems allow predictions to be made on the behavior in the broader natural environment. Our study provides the basis for a testing scheme and data treatment technique to extrapolate and eventually predict nanoparticle behavior in a wide variety of natural waters.
工程纳米粒子(ENPs)来自工业应用和消费产品,已经被释放到环境中。它们在环境中的分布,除其他因素外,取决于纳米粒子的分散状态和聚集行为,而这又直接影响水生生物对 ENPs 的暴露。这些粒子的聚集行为(或胶体稳定性)受水化学的控制,在很大程度上受粒子表面化学的控制。本文介绍了在广泛的 pH 值和水化学条件下,以及在标准合成(EPA)水和天然水中,对商业相关的二氧化钛纳米粒子(Evonik P25)进行大量胶体稳定性测试的结果。结果详细说明了 TiO2 聚集对溶液离子强度、相关单价和二价离子的存在、天然有机物(NOM)的存在和共存以及溶液 pH 值的依赖性。NOM 和二价离子与 TiO2 表面的特定相互作用改变了这些表面的化学性质,导致了意想不到的行为。在良好控制的批量系统中的基质测试结果允许对更广泛的自然环境中的行为进行预测。我们的研究为测试方案和数据处理技术提供了基础,以推断和最终预测各种天然水中的纳米颗粒行为。