Suppr超能文献

定量蛋白质组学揭示沙眼衣原体发育形态的代谢和致病特性。

Quantitative proteomics reveals metabolic and pathogenic properties of Chlamydia trachomatis developmental forms.

机构信息

Department of Molecular Genetics and Microbiology and Center for Microbial Pathogenesis, Duke University Medical Center, Durham, NC, USA.

出版信息

Mol Microbiol. 2011 Dec;82(5):1185-203. doi: 10.1111/j.1365-2958.2011.07877.x. Epub 2011 Nov 7.

Abstract

Chlamydia trachomatis is an obligate intracellular pathogen responsible for ocular and genital infections of significant public health importance. C. trachomatis undergoes a biphasic developmental cycle alternating between two distinct forms: the infectious elementary body (EB), and the replicative but non-infectious reticulate body (RB). The molecular basis for these developmental transitions and the metabolic properties of the EB and RB forms are poorly understood as these bacteria have traditionally been difficult to manipulate through classical genetic approaches. Using two-dimensional liquid chromatography - tandem mass spectrometry (LC/LC-MS/MS) we performed a large-scale, label-free quantitative proteomic analysis of C. trachomatis LGV-L2 EB and RB forms. Additionally, we carried out LC-MS/MS to analyse the membranes of the pathogen-containing vacuole ('inclusion'). We developed a label-free quantification approaches to measure protein abundance in a mixed-proteome background which we applied for EB and RB quantitative analysis. In this manner, we catalogued the relative distribution of > 54% of the predicted proteins in the C. trachomatis LGV-L2 proteome. Proteins required for central metabolism and glucose catabolism were predominant in the EB, whereas proteins associated with protein synthesis, ATP generation and nutrient transport were more abundant in the RB. These findings suggest that the EB is primed for a burst in metabolic activity upon entry, whereas the RB form is geared towards nutrient utilization, a rapid increase in cellular mass, and securing the resources for an impending transition back to the EB form. The most revealing difference between the two forms was the relative deficiency of cytoplasmic factors required for efficient type III secretion (T3S) in the RB stage at 18 h post infection, suggesting a reduced T3S capacity or a low frequency of active T3S apparatus assembled on a 'per organism' basis. Our results show that EB and RB proteomes are streamlined to fulfil their predicted biological functions: maximum infectivity for EBs and replicative capacity for RBs.

摘要

沙眼衣原体是一种专性细胞内病原体,可引起具有重要公共卫生意义的眼部和生殖器感染。沙眼衣原体经历一个两相发育周期,在两个不同的形式之间交替:传染性的原始体(EB)和复制但非感染性的网状体(RB)。这些发育转变的分子基础以及 EB 和 RB 形式的代谢特性尚未得到充分理解,因为这些细菌传统上难以通过经典遗传方法进行操作。使用二维液相色谱-串联质谱法(LC/LC-MS/MS),我们对沙眼衣原体 LGV-L2EB 和 RB 形式进行了大规模、无标记的定量蛋白质组学分析。此外,我们还进行了 LC-MS/MS 分析来分析含有病原体的空泡的膜(“包涵体”)。我们开发了一种无标记定量方法来测量混合蛋白质组背景中的蛋白质丰度,我们将其应用于 EB 和 RB 定量分析。通过这种方式,我们编目了沙眼衣原体 LGV-L2 蛋白质组中 > 54%的预测蛋白质的相对分布。中央代谢和葡萄糖分解代谢所需的蛋白质在 EB 中占优势,而与蛋白质合成、ATP 生成和营养物质转运相关的蛋白质在 RB 中更丰富。这些发现表明,EB 在进入时已为代谢活动的爆发做好了准备,而 RB 形式则针对营养物质的利用、细胞质量的快速增加以及为即将向 EB 形式的转变确保资源。两种形式之间最明显的区别是在感染后 18 小时的 RB 阶段,用于有效 III 型分泌(T3S)的细胞质因子相对缺乏,这表明 T3S 能力降低或活跃的 T3S 装置组装频率较低“基于每个生物体”。我们的结果表明,EB 和 RB 蛋白质组是为满足其预测的生物学功能而简化的:对于 EB 是最大的感染力,对于 RB 是最大的复制能力。

相似文献

1
Quantitative proteomics reveals metabolic and pathogenic properties of Chlamydia trachomatis developmental forms.
Mol Microbiol. 2011 Dec;82(5):1185-203. doi: 10.1111/j.1365-2958.2011.07877.x. Epub 2011 Nov 7.
2
Impact of Active Metabolism on Chlamydia trachomatis Elementary Body Transcript Profile and Infectivity.
J Bacteriol. 2018 Jun 25;200(14). doi: 10.1128/JB.00065-18. Print 2018 Jul 15.
3
The T3SS structural and effector genes of are expressed in distinct phenotypic cell forms.
Front Cell Infect Microbiol. 2025 May 8;15:1579247. doi: 10.3389/fcimb.2025.1579247. eCollection 2025.
4
Quantitative Proteomics of the Infectious and Replicative Forms of Chlamydia trachomatis.
PLoS One. 2016 Feb 12;11(2):e0149011. doi: 10.1371/journal.pone.0149011. eCollection 2016.
5
Quantitative Protein Profiling of Chlamydia trachomatis Growth Forms Reveals Defense Strategies Against Tryptophan Starvation.
Mol Cell Proteomics. 2016 Dec;15(12):3540-3550. doi: 10.1074/mcp.M116.061986. Epub 2016 Oct 26.
6
Computational Modeling of the Chlamydial Developmental Cycle Reveals a Potential Role for Asymmetric Division.
mSystems. 2023 Apr 27;8(2):e0005323. doi: 10.1128/msystems.00053-23. Epub 2023 Mar 16.
8
Single-Inclusion Kinetics of Development.
mSystems. 2020 Oct 13;5(5):e00689-20. doi: 10.1128/mSystems.00689-20.
10
Tag-Dependent Substrate Selection of ClpX Underlies Secondary Differentiation of Chlamydia trachomatis.
mBio. 2022 Oct 26;13(5):e0185822. doi: 10.1128/mbio.01858-22. Epub 2022 Sep 26.

引用本文的文献

1
Harnessing immunopeptidomics for next-generation vaccines against intracellular bacterial pathogens.
Mol Biol Rep. 2025 Jun 7;52(1):561. doi: 10.1007/s11033-025-10678-x.
2
Pathogenicity and virulence of : Insights into host interactions, immune evasion, and intracellular survival.
Virulence. 2025 Dec;16(1):2503423. doi: 10.1080/21505594.2025.2503423. Epub 2025 May 15.
3
The secreted effector protein CT181 binds to Mcl-1 to prolong neutrophil survival.
bioRxiv. 2025 Mar 16:2025.03.16.643443. doi: 10.1101/2025.03.16.643443.
4
Altering the redox status of directly impacts its developmental cycle progression.
Elife. 2025 Jan 17;13:RP98409. doi: 10.7554/eLife.98409.
5
The SWIB domain-containing DNA topoisomerase I of mediates DNA relaxation.
bioRxiv. 2024 Dec 3:2024.12.03.626651. doi: 10.1101/2024.12.03.626651.
6
Overexpressing the ClpC AAA+ unfoldase accelerates developmental cycle progression in .
mBio. 2025 Jan 8;16(1):e0287024. doi: 10.1128/mbio.02870-24. Epub 2024 Nov 22.
7
Insights into Chlamydia Development and Host Cells Response.
Microorganisms. 2024 Jun 26;12(7):1302. doi: 10.3390/microorganisms12071302.
8
Metabolic model guided CRISPRi identifies a central role for phosphoglycerate mutase in persistence.
mSystems. 2024 Jul 23;9(7):e0071724. doi: 10.1128/msystems.00717-24. Epub 2024 Jun 28.
9
Sequence, structure prediction, and epitope analysis of the polymorphic membrane protein family in Chlamydia trachomatis.
PLoS One. 2024 Jun 11;19(6):e0304525. doi: 10.1371/journal.pone.0304525. eCollection 2024.
10
Hijacking host cell vesicular transport: New insights into the nutrient acquisition mechanism of .
Virulence. 2024 Dec;15(1):2351234. doi: 10.1080/21505594.2024.2351234. Epub 2024 May 21.

本文引用的文献

1
The Chlamydial Type III Secretion Mechanism: Revealing Cracks in a Tough Nut.
Front Microbiol. 2010 Oct 19;1:114. doi: 10.3389/fmicb.2010.00114. eCollection 2010.
3
Proteomic profiling of a layered tissue reveals unique glycolytic specializations of photoreceptor cells.
Mol Cell Proteomics. 2011 Mar;10(3):M110.002469. doi: 10.1074/mcp.M110.002469. Epub 2010 Dec 20.
4
Immunity and vaccines against sexually transmitted Chlamydia trachomatis infection.
Curr Opin Infect Dis. 2011 Feb;24(1):56-61. doi: 10.1097/QCO.0b013e3283421081.
5
Effective--a database of predicted secreted bacterial proteins.
Nucleic Acids Res. 2011 Jan;39(Database issue):D591-5. doi: 10.1093/nar/gkq1154. Epub 2010 Nov 11.
6
Mass spectrometry in high-throughput proteomics: ready for the big time.
Nat Methods. 2010 Sep;7(9):681-5. doi: 10.1038/nmeth0910-681.
7
Mass spectrometry-based proteomics in cell biology.
J Cell Biol. 2010 Aug 23;190(4):491-500. doi: 10.1083/jcb.201004052.
8
The conserved Tarp actin binding domain is important for chlamydial invasion.
PLoS Pathog. 2010 Jul 15;6(7):e1000997. doi: 10.1371/journal.ppat.1000997.
9
Risk of sequelae after Chlamydia trachomatis genital infection in women.
J Infect Dis. 2010 Jun 15;201 Suppl 2:S134-55. doi: 10.1086/652395.
10
Biological characterization of Chlamydia trachomatis plasticity zone MACPF domain family protein CT153.
Infect Immun. 2010 Jun;78(6):2691-9. doi: 10.1128/IAI.01455-09. Epub 2010 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验