Suppr超能文献

乳腺癌前哨淋巴结微转移中前哨淋巴结无浸润预测:列线图验证及与其他模型的比较。

Non sentinel node involvement prediction for sentinel node micrometastases in breast cancer: nomogram validation and comparison with other models.

机构信息

Institut Paoli Calmettes, Marseille, France.

出版信息

Breast. 2012 Apr;21(2):204-9. doi: 10.1016/j.breast.2011.09.013. Epub 2011 Oct 19.

Abstract

PURPOSE

The risk of non sentinel node (NSN) involvement varies in function of the characteristics of sentinel nodes (SN) and primary tumor. Our aim was to determine and validate a statistical tool (a nomogram) able to predict the risk of NSN involvement in case of SN micro or sub-micrometastasis of breast cancer. We have compared this monogram with other models described in the literature.

METHODS

We have collected data on 905 patients, then 484 other patients, to build and validate the nomogram and compare it with other published scores and nomograms.

RESULTS

Multivariate analysis conducted on the data of the first cohort allowed us to define a nomogram based on 5 criteria: the method of SN detection (immunohistochemistry or by standard coloration with HES); the ratio of positive SN out of total removed SN; the pathologic size of the tumor; the histological type; and the presence (or not) of lympho-vascular invasion. The nomogram developed here is the only one dedicated to micrometastasis and developed on the basis of two large cohorts. The results of this statistical tool in the calculation of the risk of NSN involvement is similar to those of the MSKCC (the similarly more effective nomogram according to the literature), with a lower rate of false negatives.

CONCLUSION

this nomogram is dedicated specifically to cases of SN involvement by metastasis lower or equal to 2 mm. It could be used in clinical practice in the way to omit ALND when the risk of NSN involvement is low.

摘要

目的

非前哨淋巴结(NSN)受累的风险因前哨淋巴结(SN)和原发肿瘤的特征而异。我们的目的是确定和验证一种统计工具(列线图),能够预测 SN 微转移或乳腺癌亚微转移时 NSN 受累的风险。我们比较了这个列线图与文献中描述的其他模型。

方法

我们收集了 905 例患者的数据,然后又收集了 484 例患者的数据,用于构建和验证该列线图,并与其他已发表的评分和列线图进行比较。

结果

对第一队列数据进行多变量分析,使我们能够基于 5 个标准定义一个列线图:SN 检测方法(免疫组化或 HES 标准染色);阳性 SN 与总切除 SN 的比值;肿瘤的病理大小;组织学类型;以及是否存在淋巴血管侵犯。这里开发的列线图是唯一针对微转移并基于两个大队列开发的列线图。该统计工具在计算 NSN 受累风险方面的结果与 MSKCC 相似(根据文献,MSKCC 是更有效的列线图),假阴性率较低。

结论

该列线图专门针对 SN 受累转移小于或等于 2 毫米的情况。在 NSN 受累风险较低的情况下,它可以在临床实践中用于省略 ALND。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验