Suppr超能文献

八功能 PLGA 纳米粒用于肿瘤的靶向和高效 siRNA 递送。

Octa-functional PLGA nanoparticles for targeted and efficient siRNA delivery to tumors.

机构信息

Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.

出版信息

Biomaterials. 2012 Jan;33(2):583-91. doi: 10.1016/j.biomaterials.2011.09.061. Epub 2011 Oct 19.

Abstract

Therapies based on RNA interference, using agents such as siRNA, are limited by the absence of safe, efficient vehicles for targeted delivery in vivo. The barriers to siRNA delivery are well known and can be individually overcome by addition of functional modules, such as conjugation of moieties for cell penetration or targeting. But, so far, it has been impossible to engineer multiple modules into a single unit. Here, we describe the synthesis of degradable nanoparticles that carry eight synergistic functions: 1) polymer matrix for stabilization/controlled release; 2) siRNA for gene knockdown; 3) agent to enhance endosomal escape; 4) agent to enhance siRNA potency; 5) surface-bound PEG for enhancing circulatory time; and surface-bound peptides for 6) cell penetration; 7) endosomal escape; and 8) tumor targeting. Further, we demonstrate that this approach can provide prolonged knockdown of PLK1 and control of tumor growth in vivo. Importantly, all elements in these octa-functional nanoparticles are known to be safe for human use and each function can be individually controlled, giving this approach to synthetic RNA-loaded nanoparticles potential in a variety of clinical applications.

摘要

基于 RNA 干扰的疗法,使用 siRNA 等试剂,受到体内靶向递送缺乏安全、有效的载体的限制。siRNA 递送的障碍是众所周知的,可以通过添加功能模块来单独克服,例如连接用于细胞穿透或靶向的部分。但是,到目前为止,还不可能将多个模块设计到一个单一的单元中。在这里,我们描述了可降解纳米颗粒的合成,该纳米颗粒携带八种协同功能:1)聚合物基质用于稳定/控制释放;2)siRNA 用于基因敲低;3)增强内体逃逸的试剂;4)增强 siRNA 效力的试剂;5)表面结合的 PEG 用于延长循环时间;和表面结合的肽用于 6)细胞穿透;7)内体逃逸;和 8)肿瘤靶向。此外,我们证明了这种方法可以提供 PLK1 的长时间敲低和对体内肿瘤生长的控制。重要的是,这些八功能纳米颗粒中的所有元素都已知对人体使用是安全的,并且每个功能都可以单独控制,这使得这种合成 RNA 负载的纳米颗粒在各种临床应用中具有潜力。

相似文献

1
Octa-functional PLGA nanoparticles for targeted and efficient siRNA delivery to tumors.
Biomaterials. 2012 Jan;33(2):583-91. doi: 10.1016/j.biomaterials.2011.09.061. Epub 2011 Oct 19.
2
PLGA nanoparticles codeliver paclitaxel and Stat3 siRNA to overcome cellular resistance in lung cancer cells.
Int J Nanomedicine. 2012;7:4269-83. doi: 10.2147/IJN.S33666. Epub 2012 Aug 3.
8
SiRNA drug delivery by biodegradable polymeric nanoparticles.
J Nanosci Nanotechnol. 2006 Sep-Oct;6(9-10):2821-8. doi: 10.1166/jnn.2006.436.
9
Multi-layered nanoparticles for combination gene and drug delivery to tumors.
Biomaterials. 2014 Nov;35(34):9343-54. doi: 10.1016/j.biomaterials.2014.07.043. Epub 2014 Aug 8.

引用本文的文献

1
Functionalized chitosan as nano-delivery platform for CRISPR-Cas9 in cancer treatment.
Asian J Pharm Sci. 2025 Jun;20(3):101041. doi: 10.1016/j.ajps.2025.101041. Epub 2025 Feb 26.
2
Nanotechnology approaches to drug delivery for the treatment of ischemic stroke.
Bioact Mater. 2024 Sep 23;43:145-161. doi: 10.1016/j.bioactmat.2024.09.016. eCollection 2025 Jan.
3
The landscape of nanoparticle-based siRNA delivery and therapeutic development.
Mol Ther. 2024 Feb 7;32(2):284-312. doi: 10.1016/j.ymthe.2024.01.005. Epub 2024 Jan 10.
4
Engineering siRNA therapeutics: challenges and strategies.
J Nanobiotechnology. 2023 Oct 18;21(1):381. doi: 10.1186/s12951-023-02147-z.
5
Megakaryocyte membrane-wrapped nanoparticles for targeted cargo delivery to hematopoietic stem and progenitor cells.
Bioeng Transl Med. 2022 Nov 29;8(3):e10456. doi: 10.1002/btm2.10456. eCollection 2023 May.
6
Application of nanotechnology in reversing therapeutic resistance and controlling metastasis of colorectal cancer.
World J Gastroenterol. 2023 Apr 7;29(13):1911-1941. doi: 10.3748/wjg.v29.i13.1911.
8
Single small molecule-assembled nanoparticles mediate efficient oral drug delivery.
Nano Res. 2019 Oct;12(10):2468-2476. doi: 10.1007/s12274-019-2470-0. Epub 2019 Jul 24.
9
Silencing VDAC1 to Treat Mesothelioma Cancer: Tumor Reprograming and Altering Tumor Hallmarks.
Biomolecules. 2022 Jun 27;12(7):895. doi: 10.3390/biom12070895.
10
ZNF117 regulates glioblastoma stem cell differentiation towards oligodendroglial lineage.
Nat Commun. 2022 Apr 22;13(1):2196. doi: 10.1038/s41467-022-29884-3.

本文引用的文献

1
Enhanced siRNA delivery into cells by exploiting the synergy between targeting ligands and cell-penetrating peptides.
Biomaterials. 2011 Sep;32(26):6194-203. doi: 10.1016/j.biomaterials.2011.04.053. Epub 2011 Jun 12.
2
Targeted nanoparticles deliver siRNA to melanoma.
J Invest Dermatol. 2010 Dec;130(12):2790-8. doi: 10.1038/jid.2010.222. Epub 2010 Aug 5.
3
A status report on RNAi therapeutics.
Silence. 2010 Jul 8;1(1):14. doi: 10.1186/1758-907X-1-14.
4
Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs.
Science. 2010 May 21;328(5981):1031-5. doi: 10.1126/science.1183057. Epub 2010 Apr 8.
5
Intravenous hemostat: nanotechnology to halt bleeding.
Sci Transl Med. 2009 Dec 16;1(11):11ra22. doi: 10.1126/scitranslmed.3000397.
6
Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting.
J Control Release. 2010 Aug 3;145(3):178-81. doi: 10.1016/j.jconrel.2010.03.016. Epub 2010 Mar 23.
7
Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles.
Nature. 2010 Apr 15;464(7291):1067-70. doi: 10.1038/nature08956. Epub 2010 Mar 21.
8
Tissue-penetrating delivery of compounds and nanoparticles into tumors.
Cancer Cell. 2009 Dec 8;16(6):510-20. doi: 10.1016/j.ccr.2009.10.013.
9
Ligand-modified gene carriers increased uptake in target cells but reduced DNA release and transfection efficiency.
Nanomedicine. 2010 Apr;6(2):334-43. doi: 10.1016/j.nano.2009.09.001. Epub 2009 Oct 2.
10
Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice.
J Clin Invest. 2009 Mar;119(3):661-73. doi: 10.1172/JCI37515. Epub 2009 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验