Institute of Biomedical Engineering, Department of Chemical Engineering, Ecole Polytechnique de Montreal, P.O. Box 6079, Station Centre-Ville, Montreal, Quebec, Canada H3C 3A7.
Osteoarthritis Cartilage. 2011 Dec;19(12):1458-68. doi: 10.1016/j.joca.2011.09.007. Epub 2011 Oct 5.
This study characterizes collagen organization (CO) in human normal (n = 6), degraded (n = 6) and repair (n = 22) cartilages, using polarized light (PLM) and scanning electron (SEM) microscopies.
CO was assessed using a recently developed PLM-CO score (Changoor et al. Osteoarthritis Cartilage 2011;19:126-35), and zonal proportions measured. SEM images were captured from locations matched to PLM. Fibre orientations were assessed in SEM and compared to those observed in PLM. CO was also assessed in individual SEM images and combined to generate a SEM-CO score for overall CO analogous to PLM-CO. Fibre diameters were measured in SEM.
PLM-CO and SEM-CO scores were correlated, r = 0.786 (P < 0.00001, n = 32), after excluding two outliers. Orientation observed in PLM was validated by SEM since PLM/SEM correspondence occurred in 91.6% of samples. Proportions of the deep (DZ), transitional (TZ) and superficial (SZ) zones averaged 74.0 ± 9.1%, 18.6 ± 7.0%, and 7.3 ± 1.2% in normal, and 45.6 ± 10.7%, 47.2 ± 10.1% and 9.5 ± 3.4% in degraded cartilage, respectively. Fibre diameters in normal cartilage increased with depth from the articular surface [55.8 ± 9.4 nm (SZ), 87.5 ± 1.8 nm (TZ) and 108.2 ± 1.8 nm (DZ)]. Fibre diameters were smaller in repair biopsies [60.4 ± 0.7 nm (SZ), 63.2 ± 0.6 nm (TZ) and 67.2 ± 0.8 nm (DZ)]. Degraded cartilage had wider fibre diameter ranges and bimodal distributions, possibly reflecting new collagen synthesis and remodelling or collagen fibre unravelling. Repair tissues revealed the potential of microfracture-based repair procedures to produce zonal CO resembling native articular cartilage structure. Values are reported as mean ± 95% confidence interval.
This detailed assessment of collagen architecture could benefit the development of cartilage repair strategies intended to recreate functional collagen architecture.
本研究使用偏光显微镜(PLM)和扫描电子显微镜(SEM)来描述人正常(n=6)、退化(n=6)和修复(n=22)软骨中的胶原组织(CO)。
使用最近开发的 PLM-CO 评分(Changoor 等人,骨关节炎软骨 2011;19:126-35)评估 CO,并测量区带比例。SEM 图像从与 PLM 匹配的位置捕获。评估 SEM 中的纤维取向,并与在 PLM 中观察到的纤维取向进行比较。还在单独的 SEM 图像中评估 CO,并将其组合以生成类似于 PLM-CO 的整体 SEM-CO 评分。在 SEM 中测量纤维直径。
排除两个异常值后,PLM-CO 和 SEM-CO 评分呈高度相关(r=0.786,P<0.00001,n=32)。PLM 中的观察结果通过 SEM 得到验证,因为在 91.6%的样本中,PLM/SEM 是一致的。在正常软骨中,深层(DZ)、过渡(TZ)和浅层(SZ)区的比例平均为 74.0±9.1%、18.6±7.0%和 7.3±1.2%,在退化软骨中分别为 45.6±10.7%、47.2±10.1%和 9.5±3.4%。正常软骨中的纤维直径随离关节面的深度增加而增加[55.8±9.4nm(SZ)、87.5±1.8nm(TZ)和 108.2±1.8nm(DZ)]。修复活检中的纤维直径较小[60.4±0.7nm(SZ)、63.2±0.6nm(TZ)和 67.2±0.8nm(DZ)]。退化软骨的纤维直径范围较宽且呈双峰分布,可能反映了新的胶原合成和重塑或胶原纤维解开。修复组织显示了基于微骨折的修复程序产生类似于天然关节软骨结构的区带 CO 的潜力。值以平均值±95%置信区间表示。
这种对胶原结构的详细评估可以促进旨在重建功能性胶原结构的软骨修复策略的发展。