Suppr超能文献

基因组尺度代谢网络重建能为原核系统分类学做些什么?

What can genome-scale metabolic network reconstructions do for prokaryotic systematics?

机构信息

Evolution of Metabolic Diversity Laboratory, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), CINVESTAV-IPN, Km 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato, Mexico.

出版信息

Antonie Van Leeuwenhoek. 2012 Jan;101(1):35-43. doi: 10.1007/s10482-011-9655-1. Epub 2011 Oct 21.

Abstract

It has recently been proposed that in addition to Nomenclature, Classification and Identification, Comprehending Microbial Diversity may be considered as the fourth tenet of microbial systematics [Staley JT (2010) The Bulletin of BISMiS, 1(1): 1-5]. As this fourth goal implies a fundamental understanding of microbial speciation, this perspective article argues that translation of bacterial genome sequences into metabolic features may contribute to the development of modern polyphasic taxonomic approaches. Genome-scale metabolic network reconstructions (GSMRs), which are the result of computationally predicted and experimentally confirmed stoichiometric matrices incorporating all enzyme and metabolite components encoded by a genome sequence, provide a platform that can illustrate bacterial speciation. As the topology and the composition of GSMRs are expected to be the result of adaptive evolution, the features of these networks may provide the prokaryotic taxonomist with novel tools for reaching the fourth tenet of microbial systematics. Through selected examples from the Actinobacteria, which have been inferred from GSMRs and experimentally confirmed after phenotypic characterisation, it will be shown that this level of information can be incorporated into modern polyphasic taxonomic approaches. In conclusion, three specific examples are illustrated to show how GSMRs will revolutionize prokaryotic systematics, as has previously occurred in many other fields of microbiology.

摘要

最近有人提出,除了命名、分类和鉴定外,理解微生物多样性也可以被视为微生物系统学的第四个原则[Staley JT(2010)BISMiS 公报,1(1):1-5]。由于这第四个目标意味着对微生物物种形成的基本理解,本文认为将细菌基因组序列转化为代谢特征可能有助于现代多相分类方法的发展。基于基因组规模的代谢网络重建(GSMR)是通过计算预测和实验验证的包含基因组序列编码的所有酶和代谢物成分的计量矩阵得到的,它为细菌物种形成提供了一个平台。由于 GSMR 的拓扑结构和组成预计是适应性进化的结果,因此这些网络的特征可能为原核分类学家提供新的工具,以实现微生物系统学的第四个原则。通过从 GSMR 推断并在表型特征确认后实验验证的放线菌的选择实例,将表明可以将这种信息水平纳入现代多相分类方法中。总之,通过三个具体的例子来说明 GSMR 如何像在许多其他微生物学领域一样,彻底改变原核系统学。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验