Suppr超能文献

拓展初生代谢有助于产生代谢稳健性,从而促进 中的抗生素生物合成。

Expanding Primary Metabolism Helps Generate the Metabolic Robustness To Facilitate Antibiotic Biosynthesis in .

机构信息

Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom.

Evolution of Metabolic Diversity Laboratory, Langebio, Guanajuato, Mexico.

出版信息

mBio. 2018 Feb 6;9(1):e02283-17. doi: 10.1128/mBio.02283-17.

Abstract

The expansion of the genetic repertoire of an organism by gene duplication or horizontal gene transfer (HGT) can aid adaptation. bacteria are prolific producers of bioactive specialized metabolites that have adaptive functions in nature and have found extensive utility in human medicine. While the biosynthesis of these specialized metabolites is directed by dedicated biosynthetic gene clusters, little attention has been focused on how these organisms have evolved robustness in their genomes to facilitate the metabolic plasticity required to provide chemical precursors for biosynthesis during the complex metabolic transitions from vegetative growth to specialized metabolite production and sporulation. Here, we examine genetic redundancy in actinobacteria and show that specialized metabolite-producing bacterial families exhibit gene family expansion in primary metabolism. Focusing on a gene duplication event, we show that the two pyruvate kinases in the genome of arose by an ancient duplication event and that each has evolved altered enzymatic kinetics, with Pyk1 having a 20-fold-higher than Pyk2 (4,703 s compared to 215 s, respectively), and yet both are constitutively expressed. The pyruvate kinase mutants were also found to be compromised in terms of fitness compared to wild-type These data suggest that expanding gene families can help maintain cell functionality during metabolic perturbation such as nutrient limitation and/or specialized metabolite production. The rise of antimicrobial-resistant infections has prompted a resurgence in interest in understanding the production of specialized metabolites, such as antibiotics, by The presence of multiple genes encoding the same enzymatic function is an aspect of biology that has received little attention; however, understanding how the metabolic expansion influences these organisms can help enhance production of clinically useful molecules. Here, we show that expanding the number of pyruvate kinases enables metabolic adaptation, increases strain fitness, and represents an excellent target for metabolic engineering of industrial specialized metabolite-producing bacteria and the activation of cryptic specialized metabolites.

摘要

生物体通过基因复制或水平基因转移(HGT)扩展遗传 repertoire 有助于适应。细菌是生物活性特殊代谢物的丰富生产者,这些代谢物在自然界中具有适应性功能,并在人类医学中得到广泛应用。虽然这些特殊代谢物的生物合成由专门的生物合成基因簇指导,但很少关注这些生物体如何在其基因组中进化出稳健性,以促进代谢可塑性,从而为从营养生长到特殊代谢产物生产和孢子形成的复杂代谢转变期间的生物合成提供化学前体。在这里,我们研究了放线菌中的遗传冗余性,并表明产生特殊代谢产物的细菌家族在初级代谢中表现出基因家族扩张。我们关注基因复制事件,表明基因组中的两个丙酮酸激酶是由古老的复制事件产生的,并且每个酶都进化出了改变的酶动力学,其中 Pyk1 的 比 Pyk2 高 20 倍(分别为 4,703 s 和 215 s),但两者均持续表达。与野生型 相比,丙酮酸激酶突变体的适应性也受到损害。这些数据表明,在代谢扰动(如营养限制和/或特殊代谢产物生产)期间,扩展基因家族可以帮助维持细胞功能。抗微生物耐药性感染的增加促使人们重新关注理解抗生素等特殊代谢物的产生。存在多个编码相同酶功能的基因是 生物学中一个受到关注较少的方面;然而,了解代谢扩展如何影响这些生物体有助于提高临床有用分子的产量。在这里,我们表明,增加丙酮酸激酶的数量可以实现代谢适应、提高菌株适应性,并为工业特殊代谢产物生产菌的代谢工程和隐匿特殊代谢产物的激活提供了一个极好的目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b877/5801464/fbce44e3ce9d/mbo0011837190001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验