Suppr超能文献

氧中心自由基对原子簇中 C-H 键的活化。

C-H bond activation by oxygen-centered radicals over atomic clusters.

机构信息

Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

出版信息

Acc Chem Res. 2012 Mar 20;45(3):382-90. doi: 10.1021/ar2001364. Epub 2011 Oct 21.

Abstract

Saturated hydrocarbons, or alkanes, are major constituents of natural gas and oil. Directly transforming alkanes into more complex organic compounds is a value-adding process, but the task is very difficult to achieve, especially at low temperature. Alkanes can react at high temperature, but these reactions (with oxygen, for example) are difficult to control and usually proceed to carbon dioxide and water, the thermodynamically stable byproducts. Consequently, a great deal of research effort has been focused on generating and studying chemical entities that are able to react with alkanes or efficiently activate C-H bonds at lower temperatures, preferably room temperature. To identify low-temperature methods of C-H bond activation, researchers have investigated free radicals, that is, species with open-shell electronic structures. Oxygen-centered radicals are typical of the open-shell species that naturally occur in atmospheric, chemical, and biological systems. In this Account, we survey atomic clusters that contain oxygen-centered radicals (O(-•)), with an emphasis on radical generation and reaction with alkanes near room temperature. Atomic clusters are an intermediate state of matter, situated between isolated atoms and condensed-phase materials. Atomic clusters containing the O(-•) moiety have generated promising results for low-temperature C-H bond activation. After a brief introduction to the experimental methods and the compositions of atomic clusters that contain O(-•) radicals, we focus on two important factors that can dramatically influence C-H bond activation. The first factor is spin. The O(-•)-containing clusters have unpaired spin density distributions over the oxygen atoms. We show that the nature of the unpaired spin density distribution, such as localization and delocalization within the clusters, heavily influences the reactivity of O(-•) radicals in C-H bond activation. The second factor is charge. The O(-•)-containing clusters can be negatively charged, positively charged, or neutral overall. We discuss how the charge state may influence C-H bond activation. Moreover, for a given charge state, such as the cationic state, it can be demonstrated that local charge distribution around the O(-•) centers can also significantly change the reactivity in C-H bond activation. Through judicious synthetic choices, spin and charge can be readily controllable physical quantities in atomic clusters. The adjustment of these two properties can impact C-H bond activation, thus constituting an important consideration in the rational design of catalysts for practical alkane transformations.

摘要

饱和烃,又称烷烃,是天然气和石油的主要成分。将烷烃直接转化为更复杂的有机化合物是一个增值过程,但这项任务非常困难,特别是在低温下。烷烃可以在高温下反应,但这些反应(例如与氧气反应)很难控制,通常会生成热力学稳定的副产物二氧化碳和水。因此,人们投入了大量的研究精力来生成和研究能够在较低温度下与烷烃反应或有效激活 C-H 键的化学物质,最好是在室温下。为了确定低温下 C-H 键的激活方法,研究人员研究了自由基,即具有开壳电子结构的物质。氧中心自由基是自然存在于大气、化学和生物系统中的开壳物种的典型代表。在本综述中,我们调查了含有氧中心自由基(O(-•))的原子团簇,重点介绍了在接近室温的条件下自由基的生成和与烷烃的反应。原子团簇是介于孤立原子和凝聚相物质之间的物质中间态。含有 O(-•)部分的原子团簇在低温下 C-H 键的激活方面取得了很有前景的结果。在简要介绍含有 O(-•)自由基的原子团簇的实验方法和组成后,我们重点介绍了两个可以显著影响 C-H 键激活的重要因素。第一个因素是自旋。含有 O(-•)的团簇在氧原子上具有未配对的自旋密度分布。我们表明,未配对的自旋密度分布的性质,例如在团簇内的局域化和离域化,强烈影响 O(-•)自由基在 C-H 键激活中的反应性。第二个因素是电荷。含有 O(-•)的团簇可以整体带负电荷、正电荷或中性。我们讨论了电荷状态如何影响 C-H 键的激活。此外,对于给定的电荷状态,例如阳离子状态,可以证明 O(-•)中心周围的局部电荷分布也可以显著改变 C-H 键的激活反应性。通过明智的合成选择,可以轻松控制原子团簇中的自旋和电荷这两个物理量。这两个性质的调整可以影响 C-H 键的激活,从而成为实际烷烃转化中催化剂合理设计的一个重要考虑因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验