Luo Wen-Zhi, Chen Guang-Hui, Xiao Song-Tao, Wang Qiang, Huang Ze-Kun, Wang Ling-Yu
Department of Chemistry, Shantou University Guangdong 515063 China
Institute of Radiochemistry, China Institute of Atomic Energy (CIAE) Beijing 102413 People's Republic of China
RSC Adv. 2019 Jul 30;9(41):23622-23632. doi: 10.1039/c9ra04495g. eCollection 2019 Jul 29.
Enzymatic heme and non-heme Fe(iv)-O species usually play an important role in hydrogen abstraction of biocatalytic reactions, yet duplicating the reactivity in biomimicry remains a great challenge. Based on Xiao 's experimental work [, 2014, (7), 590], we theoretically found that in the presence of the oxidant NO, the enzyme-like metal organic framework, , magnesium-diluted Fe-MOF-74 [Fe/(Mg)-MOF-74] can activate the C-H bonds of 1,4-cyclohexadiene (CHD) into benzene with a two-step hydrogen abstraction mechanism based on the density functional theory (DFT) level. It is shown that the first transition state about the cleavage of the N-O bond of NO to form the Fe(iv)-O species is the rate-determining step with activation enthalpy of 19.4 kcal mol and the complete reaction is exothermic by 62.8 kcal mol on quintet rather than on triplet PES. In addition, we proposed a rebound mechanism of cyclic cyclohexane (CHA) hydroxylation to cyclohexanol which has not been studied experimentally. Note that the activation enthalpies on the first hydrogen abstraction for both cyclic CHD and cyclohexane are just 8.1 and 3.5 kcal mol, respectively, which are less than that of 13.9 kcal mol for chained ethane. Most importantly, for the hydrogen abstraction of methane catalyzed by M/(Mg)-MOF-74 (M = Cu, Ni, Fe, and Co), we found that the activation enthalpies the C-H bond length of methane of TSs, NPA charge of the reacting oxyl atom have linear relationships with different slopes, , shorter C-H bond and less absolute value of NPA charge of oxyl atom are associated with lower activation enthalpy; while for the activation of methane, ethane, propane and CHD catalyzed by Fe/(Mg)-MOF-74, there also exists positive correlations between activation enthalpies, bond dissociation energies (BDEs) and C-H bond lengths in TSs, respectively. We hope the present theoretical study may provide the guideline to predict the performance of MOFs in C-H bond activation reactions.
酶促血红素和非血红素Fe(iv)-O物种通常在生物催化反应的氢提取中发挥重要作用,但在仿生学中复制这种反应活性仍然是一个巨大的挑战。基于肖在2014年发表的实验工作[(7), 590],我们从理论上发现,在氧化剂NO存在的情况下,类酶金属有机框架,即镁稀释的Fe-MOF-74 [Fe/(Mg)-MOF-74],可以基于密度泛函理论(DFT)水平,通过两步氢提取机制将1,4-环己二烯(CHD)的C-H键活化生成苯。结果表明,NO的N-O键断裂形成Fe(iv)-O物种的第一个过渡态是速率决定步骤,活化焓为19.4 kcal mol,在五重态而非三重态势能面上整个反应放热62.8 kcal mol。此外,我们提出了环戊烷(CHA)羟基化生成环己醇的反弹机制,该机制尚未经过实验研究。值得注意的是,环状CHD和环己烷在第一次氢提取时的活化焓分别仅为8.1和3.5 kcal mol,低于链状乙烷的13.9 kcal mol。最重要的是,对于由M/(Mg)-MOF-74 (M = Cu、Ni、Fe和Co)催化的甲烷氢提取,我们发现过渡态的活化焓、甲烷的C-H键长度、反应性氧原子的NPA电荷具有不同斜率的线性关系,即较短的C-H键和较小的氧原子NPA电荷绝对值与较低的活化焓相关;而对于由Fe/(Mg)-MOF-74催化的甲烷、乙烷、丙烷和CHD的活化,过渡态的活化焓、键解离能(BDEs)和C-H键长度之间也分别存在正相关。我们希望目前的理论研究可以为预测金属有机框架在C-H键活化反应中的性能提供指导。