Department of Chemistry, University of Washington , Seattle, Washington 98104, United States.
Acc Chem Res. 2014 Mar 18;47(3):805-15. doi: 10.1021/ar400196f. Epub 2013 Dec 30.
Gold (Au) nanoparticles supported on reducible oxides such as TiO2 demonstrate exceptional catalytic activity for a wide range of gas phase oxidation reactions such as CO oxidation, olefin epoxidation, and water gas shift catalysis. Scientists have recently shifted their hypotheses on the origin of the reactivity of these materials from the unique electronic properties and under-coordinated Au sites on nanometer-sized particles to bifunctional sites at the Au-support interface. In this Account, we summarize our recent experimental and theoretical results to provide insights into the active sites and pathways that control oxidation over Au/TiO2 catalysts. We provide transmission IR spectroscopic data that show the direct involvement of the Au-Ti(4+) dual perimeter sites, and density functional theory results that connect the electronic properties at these sites to their reactivity and to plausible reaction mechanisms. We also show the importance of interfacial Au-Ti(4+) sites in adsorbing and activating O2 as a result of charge transfer from the Au into antibonding states on O2 causing di-σ interactions with interfacial Au-Ti(4+) sites. This results in apparent activation energies for O2 activation of 0.16-0.60 eV thus allowing these materials to operate over a wide range of temperatures (110-420 K) and offering the ability also to control H-H, C-H, and C-O bond scission. At low temperatures (100-130 K), adsorbed O2 directly reacts with co-adsorbed CO or H2. In addition, we observe the specific consumption of CO adsorbed on TiO2. The more strongly held CO/Au species do not react at ∼120 K due to high diffusion barriers that prevent them from reaching active interfacial sites. At higher temperatures, O2 directly dissociates to form active oxygen adatoms (O*) on Au and TiO2. These readily react with bound hydrocarbon intermediates via base-catalyzed nucleophilic attack on unsaturated C═O and C═C bonds or via activation of weakly acidic C-H or O-H bonds. We demonstrate that when the active Au-Ti(4+) sites are pre-occupied by O*, the low temperature CO oxidation rate is reduced by a factor 22. We observe similar site blocking for H2 oxidation by O2, where the reaction at 210 K is quenched by ice formation. At higher temperatures (400-420 K), the O* generated at the perimeter sites is able to diffuse onto the Au particles, which then activate weakly acidic C-H bonds and assist in C-O bond scission. These sites allow for active conversion of adsorbed acetate intermediates on TiO2 (CH3COO/TiO2) to a gold ketenylidene species (Au2═C═C═O). The consecutive C-H bond scission steps appear to proceed by the reaction with basic O* or OH* on the Au sites and C-O bond activation occurs at the Au-Ti(4+) dual perimeter sites. There is a bound-intermediate transfer from the TiO2 support to the Au sites during the course of reaction as the reactant (CH3COO/TiO2) and the product (Au2═C═C═O) are bound to different sites. We demonstrate that IR spectroscopy is a powerful tool to follow surface catalytic reactions and provide kinetic information, while theory provides atomic scale insights into the mechanisms and the active sites that control catalytic oxidation.
金(Au)纳米粒子负载在可还原氧化物上,如 TiO2,在各种气相氧化反应中表现出非凡的催化活性,如 CO 氧化、烯烃环氧化和水汽变换催化。科学家们最近将这些材料的反应性起源的假设从纳米颗粒上独特的电子性质和配位不足的 Au 位点转移到 Au-载体界面的双功能位点。在本报告中,我们总结了我们最近的实验和理论结果,以提供对控制 Au/TiO2 催化剂氧化的活性位点和途径的深入了解。我们提供传输红外光谱数据,表明 Au-Ti(4+)双重边界位点的直接参与,以及密度泛函理论结果,将这些位点的电子性质与其反应性和可能的反应机制联系起来。我们还表明,界面 Au-Ti(4+)位点在吸附和激活 O2 中的重要性,这是由于 Au 向 O2 的反键态转移电荷,导致与界面 Au-Ti(4+)位点发生二σ相互作用的结果。这导致 O2 活化的表观活化能为 0.16-0.60 eV,从而使这些材料能够在较宽的温度范围内(110-420 K)运行,并提供控制 H-H、C-H 和 C-O 键断裂的能力。在低温(100-130 K)下,吸附的 O2 直接与共吸附的 CO 或 H2 反应。此外,我们观察到 TiO2 上吸附的 CO 的特定消耗。由于高扩散势垒阻止它们到达活性界面位点,因此在约 120 K 时,较强吸附的 CO/Au 物种不会反应。在较高温度下,O2 直接解离形成 Au 和 TiO2 上的活性氧原子(O*)。这些原子通过对不饱和 C═O 和 C═C 键的亲核攻击,或通过对弱酸性 C-H 或 O-H 键的活化,与结合的烃类中间体快速反应。我们证明,当活性 Au-Ti(4+)位点被 O预先占据时,低温下 CO 氧化速率降低了 22 倍。我们观察到 O2 对 H2 氧化的类似位点阻断,其中 210 K 下的反应被冰形成所抑制。在较高温度(400-420 K)下,边界位点产生的 O能够扩散到 Au 颗粒上,从而激活弱酸性 C-H 键并协助 C-O 键断裂。这些位点允许在 TiO2 上吸附的醋酸盐中间体(CH3COO/TiO2)有效地转化为金烯酮亚基(Au2═C═C═O)。连续的 C-H 键断裂步骤似乎通过 Au 位点上的碱性 O或 OH反应进行,C-O 键活化发生在 Au-Ti(4+)双边界位点。在反应过程中,由于反应物(CH3COO/TiO2)和产物(Au2═C═C═O)结合在不同的位点上,因此从 TiO2 载体到 Au 位点有一个结合中间体的转移。我们证明,红外光谱是跟踪表面催化反应和提供动力学信息的有力工具,而理论则提供了原子尺度上对控制催化氧化的机制和活性位点的深入了解。