Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA.
J Biomech. 2012 Jan 3;45(1):129-33. doi: 10.1016/j.jbiomech.2011.09.022. Epub 2011 Oct 21.
This study evaluated the discriminant capability of stability measures, trunk kinematics, and step kinematics to classify successful and failed compensatory stepping responses. In addition, the shared variance between stability measures, step kinematics, and trunk kinematics is reported. The stability measures included the anteroposterior distance (d) between the body center of mass and the stepping limb toe, the margin of stability (MOS), as well as time-to-boundary considering velocity (TTB(v)), velocity and acceleration (TTB(a)), and MOS (TTB(MOS)). Kinematic measures included trunk flexion angle and angular velocity, step length, and the time after disturbance onset of recovery step completion. Fourteen young adults stood on a treadmill that delivered surface accelerations necessitating multiple forward compensatory steps. Thirteen subjects fell from an initial disturbance, but recovered from a second, identical disturbance. Trunk flexion velocity at completion of the first recovery step and trunk flexion angle at completion of the second step had the greatest overall classification of all measures (92.3%). TTB(v) and TTB(a) at completion of both steps had the greatest classification accuracy of all stability measures (80.8%). The length of the first recovery step (r ≤ 0.70) and trunk flexion angle at completion of the second recovery step (r ≤ -0.54) had the largest correlations with stability measures. Although TTB(v) and TTB(a) demonstrated somewhat smaller discriminant capabilities than trunk kinematics, the small correlations between these stability measures and trunk kinematics (|r| ≤ 0.52) suggest that they reflect two important, yet different, aspects of a compensatory stepping response.
本研究评估了稳定性测量、躯干运动学和步行动力学区分成功和失败补偿跨步反应的能力。此外,还报告了稳定性测量、步行动力学和躯干运动学之间的共享方差。稳定性测量包括身体质心和跨步腿脚趾之间的前后距离 (d)、稳定性边界 (MOS) 以及考虑速度 (TTB(v))、速度和加速度 (TTB(a)) 和 MOS (TTB(MOS)) 的到达边界时间。运动学测量包括躯干前屈角度和角速度、步长以及从干扰开始到恢复步完成的时间。14 名年轻人站在跑步机上,跑步机施加了需要多次向前补偿步的表面加速度。13 名受试者从初始干扰中摔倒,但从第二次相同的干扰中恢复。第一次恢复步完成时的躯干前屈速度和第二步完成时的躯干前屈角度是所有测量中总体分类最好的(92.3%)。两步完成时的 TTB(v) 和 TTB(a) 具有所有稳定性测量中最高的分类精度(80.8%)。第一步恢复步的长度(r ≤ 0.70)和第二步完成时的躯干前屈角度(r ≤ -0.54)与稳定性测量的相关性最大。尽管 TTB(v) 和 TTB(a) 的区分能力略低于躯干运动学,但这些稳定性测量与躯干运动学之间的相关性较小(|r| ≤ 0.52),表明它们反映了补偿跨步反应的两个重要但不同的方面。