Suppr超能文献

单层投影神经网络用于求解带线性等式和边界约束的非光滑优化问题。

A one-layer projection neural network for nonsmooth optimization subject to linear equalities and bound constraints.

出版信息

IEEE Trans Neural Netw Learn Syst. 2013 May;24(5):812-24. doi: 10.1109/TNNLS.2013.2244908.

Abstract

This paper presents a one-layer projection neural network for solving nonsmooth optimization problems with generalized convex objective functions and subject to linear equalities and bound constraints. The proposed neural network is designed based on two projection operators: linear equality constraints, and bound constraints. The objective function in the optimization problem can be any nonsmooth function which is not restricted to be convex but is required to be convex (pseudoconvex) on a set defined by the constraints. Compared with existing recurrent neural networks for nonsmooth optimization, the proposed model does not have any design parameter, which is more convenient for design and implementation. It is proved that the output variables of the proposed neural network are globally convergent to the optimal solutions provided that the objective function is at least pseudoconvex. Simulation results of numerical examples are discussed to demonstrate the effectiveness and characteristics of the proposed neural network.

摘要

本文提出了一种单层投影神经网络,用于求解具有广义凸目标函数且受线性等式和边界约束的非光滑优化问题。所提出的神经网络基于两个投影算子设计:线性等式约束和边界约束。优化问题中的目标函数可以是任何非光滑函数,而不限于凸函数,但要求在由约束定义的集合上凸(伪凸)。与现有的用于非光滑优化的递归神经网络相比,所提出的模型没有任何设计参数,更便于设计和实现。证明了所提出的神经网络的输出变量在目标函数至少是伪凸的情况下全局收敛于最优解。通过讨论数值实例的仿真结果,验证了所提出的神经网络的有效性和特点。

相似文献

1
A one-layer projection neural network for nonsmooth optimization subject to linear equalities and bound constraints.
IEEE Trans Neural Netw Learn Syst. 2013 May;24(5):812-24. doi: 10.1109/TNNLS.2013.2244908.
3
A one-layer recurrent neural network for constrained nonsmooth optimization.
IEEE Trans Syst Man Cybern B Cybern. 2011 Oct;41(5):1323-33. doi: 10.1109/TSMCB.2011.2140395. Epub 2011 May 2.
4
A one-layer recurrent neural network for constrained nonsmooth invex optimization.
Neural Netw. 2014 Feb;50:79-89. doi: 10.1016/j.neunet.2013.11.007. Epub 2013 Nov 19.
5
A One-Layer Recurrent Neural Network for Pseudoconvex Optimization Problems With Equality and Inequality Constraints.
IEEE Trans Cybern. 2017 Oct;47(10):3063-3074. doi: 10.1109/TCYB.2016.2567449. Epub 2016 May 24.
7
A recurrent neural network for solving a class of generalized convex optimization problems.
Neural Netw. 2013 Aug;44:78-86. doi: 10.1016/j.neunet.2013.03.010. Epub 2013 Mar 25.
9
Neural network for nonsmooth pseudoconvex optimization with general convex constraints.
Neural Netw. 2018 May;101:1-14. doi: 10.1016/j.neunet.2018.01.008. Epub 2018 Feb 5.
10
A one-layer recurrent neural network for pseudoconvex optimization subject to linear equality constraints.
IEEE Trans Neural Netw. 2011 Dec;22(12):1892-900. doi: 10.1109/TNN.2011.2169682. Epub 2011 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验