Suppr超能文献

基于磁珠的 SELDI-TOF-MS 技术鉴定血清肺癌标志物。

Identification of serum biomarkers for lung cancer using magnetic bead-based SELDI-TOF-MS.

机构信息

Department of Oncology, Renmin Hospital of Wuhan University, China.

出版信息

Acta Pharmacol Sin. 2011 Dec;32(12):1537-42. doi: 10.1038/aps.2011.137. Epub 2011 Oct 24.

Abstract

AIM

To identify novel serum biomarkers for lung cancer diagnosis using magnetic bead-based surface-enhanced laser desorption/ionization time-of-flight mass spectrum (SELDI-TOF-MS).

METHODS

The protein fractions of 121 serum specimens from 30 lung cancer patients, 30 pulmonary tuberculosis patients and 33 healthy controls were enriched using WCX magnetic beads and subjected to SELDI-TOF-MS. The spectra were analyzed using Bio-marker Wizard version 3.1.0 and Biomarker Patterns Software version 5.0. A diagnostic model was constructed with the marker proteins using a linear discrimination analysis method. The validity of this model was tested in a blind test set consisted of 8 randomly selected lung cancer patients, 10 pulmonary tuberculosis patients and 10 healthy volunteers.

RESULTS

Seventeen m/z peaks were identified, which were significantly different between the lung cancer group and the control (tuberculosis and healthy control) groups. Among these peaks, the 6445, 9725, 11705, and 15126 m/z peaks were selected by the Biomarker Pattern Software to construct a diagnostic model for lung cancer. This four-peak model established in the training set could discriminate lung cancer patients from non-cancer patients with a sensitivity of 93.3% (28/30) and a specificity of 90.5% (57/63). The diagnostic model showed a high sensitivity (75.0%) and a high specificity (95%) in the blind test validation. Database searching and literature mining indicated that the featured 4 peaks represented chaperonin (M9725), hemoglobin subunit beta (M15335), serum amyloid A (M11548), and an unknown protein.

CONCLUSION

A lung cancer diagnostic model based on bead-based SELDI-TOF-MS has been established for the early diagnosis or differential diagnosis of lung cancers.

摘要

目的

利用磁珠增强激光解吸电离飞行时间质谱(SELDI-TOF-MS)技术筛选肺癌血清标志物。

方法

采用 WCX 磁珠对 30 例肺癌患者、30 例肺结核患者和 33 例健康对照者的血清蛋白进行预分离,应用 SELDI-TOF-MS 技术进行检测,采用 Biomarker Wizard 软件和 Biomarker Patterns 软件对获取的质谱图进行分析,应用线性判别分析方法构建诊断模型,并应用该模型对 8 例随机肺癌患者、10 例肺结核患者和 10 例健康志愿者的血清进行验证。

结果

共筛选出 17 个差异有统计学意义的质荷比(m/z)峰,其中质荷比为 6445、9725、11705 和 15126 的 4 个峰,经 Biomarker Patterns 软件筛选后构建了肺癌诊断模型。该模型在训练组中对肺癌的诊断敏感性为 93.3%(28/30),特异性为 90.5%(57/63);在验证组中,诊断敏感性为 75.0%,特异性为 95%。数据库检索和文献分析提示,上述 4 个特征峰分别代表热休克蛋白 9725、血红蛋白亚基β、血清淀粉样蛋白 A 和一个未知蛋白。

结论

基于磁珠增强 SELDI-TOF-MS 技术的肺癌诊断模型,对肺癌的早期诊断或鉴别诊断有一定价值。

相似文献

引用本文的文献

本文引用的文献

1
Lung cancer.肺癌
N Engl J Med. 2008 Sep 25;359(13):1367-80. doi: 10.1056/NEJMra0802714.
4
Quality-of-life assessment in trials of lung cancer.
Lancet. 2007 Sep 15;370(9591):933; author reply 933-4. doi: 10.1016/S0140-6736(07)61438-X.
7
Chemometrics in metabonomics.代谢组学中的化学计量学
J Proteome Res. 2007 Feb;6(2):469-79. doi: 10.1021/pr060594q.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验