Suppr超能文献

RIG-I 解旋酶和羧基末端结构域之间的 55 个氨基酸连接子作为一个关键的抑制结构域,并决定结构域间构象。

55 Amino acid linker between helicase and carboxyl terminal domains of RIG-I functions as a critical repression domain and determines inter-domain conformation.

机构信息

Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto, Japan.

出版信息

Biochem Biophys Res Commun. 2011 Nov 11;415(1):75-81. doi: 10.1016/j.bbrc.2011.10.015. Epub 2011 Oct 12.

Abstract

In virus-infected cells, viral RNA with non-self structural pattern is recognized by DExD/Hbox RNA helicase, RIG-I. Once RIG-I senses viral RNA, it triggers a signaling cascade, resulting in the activation of genes including type I interferon, which activates antiviral responses. Overexpression of N-terminal caspase activation and recruitment domain (CARD) is sufficient to activate signaling; however basal activity of full-length RIG-I is undetectable. The repressor domain (RD), initially identified as a.a. 735-925, is responsible for diminished basal activity; therefore, it is suggested that RIG-I is under auto-repression in uninfected cells and the repression is reversed upon its encounter with viral RNA. In this report, we further delimited RD to a.a. 747-801, which corresponds to a linker connecting the helicase and the C-terminal domain (CTD). Alanine substitutions of the conserved residues in the linker conferred constitutive activity to full-length RIG-I. We found that the constitutive active mutants do not exhibit ATPase activity, suggesting that ATPase is required for de-repression but not signaling itself. Furthermore, trypsin digestion of recombinant RIG-I revealed that the wild-type, but not linker mutant conforms to the trypsin-resistant structure, containing CARD and helicase domain. The result strongly suggests that the linker is responsible for maintaining RIG-I in a "closed" structure to minimize unwanted production of interferon in uninfected cells. These findings shed light on the structural regulation of RIG-I function.

摘要

在病毒感染的细胞中,具有非自身结构模式的病毒 RNA 被 DExD/Hbox RNA 解旋酶 RIG-I 识别。一旦 RIG-I 检测到病毒 RNA,它就会触发信号级联反应,导致包括 I 型干扰素在内的基因的激活,从而激活抗病毒反应。N 端半胱氨酸天冬氨酸蛋白酶激活和募集结构域(CARD)的过度表达足以激活信号;然而全长 RIG-I 的基础活性是不可检测的。最初被鉴定为 a.a.735-925 的抑制域(RD)负责降低基础活性;因此,有人认为 RIG-I 在未感染的细胞中受到自身抑制,并且在遇到病毒 RNA 时抑制作用被逆转。在本报告中,我们进一步将 RD 限定为 a.a.747-801,这对应于连接解旋酶和 C 端结构域(CTD)的连接子。连接子中保守残基的丙氨酸取代赋予全长 RIG-I 组成型活性。我们发现组成型活性突变体没有表现出 ATP 酶活性,这表明 ATP 酶对于去抑制是必需的,但不是信号本身。此外,重组 RIG-I 的胰蛋白酶消化表明,野生型,但不是连接子突变体,符合胰蛋白酶抗性结构,包含 CARD 和解旋酶结构域。结果强烈表明,连接子负责维持 RIG-I 处于“关闭”结构,以最大限度地减少未感染细胞中干扰素的不必要产生。这些发现为 RIG-I 功能的结构调节提供了线索。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验