Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Japan.
PLoS Pathog. 2013;9(8):e1003533. doi: 10.1371/journal.ppat.1003533. Epub 2013 Aug 8.
The innate immune system is essential for controlling viral infections, but several viruses have evolved strategies to escape innate immunity. RIG-I is a cytoplasmic viral RNA sensor that triggers the signal to induce type I interferon production in response to viral infection. RIG-I activation is regulated by the K63-linked polyubiquitin chain mediated by Riplet and TRIM25 ubiquitin ligases. TRIM25 is required for RIG-I oligomerization and interaction with the IPS-1 adaptor molecule. A knockout study revealed that Riplet was essential for RIG-I activation. However the molecular mechanism underlying RIG-I activation by Riplet remains unclear, and the functional differences between Riplet and TRIM25 are also unknown. A genetic study and a pull-down assay indicated that Riplet was dispensable for RIG-I RNA binding activity but required for TRIM25 to activate RIG-I. Mutational analysis demonstrated that Lys-788 within the RIG-I repressor domain was critical for Riplet-mediated K63-linked polyubiquitination and that Riplet was required for the release of RIG-I autorepression of its N-terminal CARDs, which leads to the association of RIG-I with TRIM25 ubiquitin ligase and TBK1 protein kinase. Our data indicate that Riplet is a prerequisite for TRIM25 to activate RIG-I signaling. We investigated the biological importance of this mechanism in human cells and found that hepatitis C virus (HCV) abrogated this mechanism. Interestingly, HCV NS3-4A proteases targeted the Riplet protein and abrogated endogenous RIG-I polyubiquitination and association with TRIM25 and TBK1, emphasizing the biological importance of this mechanism in human antiviral innate immunity. In conclusion, our results establish that Riplet-mediated K63-linked polyubiquitination released RIG-I RD autorepression, which allowed the access of positive factors to the RIG-I protein.
天然免疫系统对于控制病毒感染至关重要,但许多病毒已经进化出逃避天然免疫的策略。RIG-I 是一种细胞质病毒 RNA 传感器,它在病毒感染时触发信号诱导 I 型干扰素的产生。RIG-I 的激活受到 Riplet 和 TRIM25 泛素连接酶介导的 K63 连接多聚泛素链的调节。TRIM25 对于 RIG-I 寡聚化和与 IPS-1 衔接分子的相互作用是必需的。敲除研究表明,Riplet 对于 RIG-I 的激活是必不可少的。然而,Riplet 激活 RIG-I 的分子机制尚不清楚,Riplet 和 TRIM25 的功能差异也不清楚。一项遗传研究和下拉实验表明,Riplet 对于 RIG-I 的 RNA 结合活性不是必需的,但对于 TRIM25 激活 RIG-I 是必需的。突变分析表明,RIG-I 抑制域内的赖氨酸 788 对于 Riplet 介导的 K63 连接多聚泛素化至关重要,并且 Riplet 对于 RIG-I 自身 N 端 CARDs 抑制的释放是必需的,这导致 RIG-I 与 TRIM25 泛素连接酶和 TBK1 蛋白激酶的结合。我们的数据表明,Riplet 是 TRIM25 激活 RIG-I 信号的前提。我们研究了这种机制在人细胞中的生物学重要性,并发现丙型肝炎病毒(HCV)破坏了这种机制。有趣的是,HCV NS3-4A 蛋白酶靶向 Riplet 蛋白,破坏内源性 RIG-I 多泛素化和与 TRIM25 和 TBK1 的结合,强调了这种机制在人类抗病毒先天免疫中的生物学重要性。总之,我们的结果表明,Riplet 介导的 K63 连接多聚泛素化释放了 RIG-I RD 自身抑制,从而使正因子能够进入 RIG-I 蛋白。