Suppr超能文献

验证健康改进网络(THIN)数据库在慢性肾脏病的流行病学研究中的应用。

Validation of The Health Improvement Network (THIN) database for epidemiologic studies of chronic kidney disease.

机构信息

Division of Nephrology, Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.

出版信息

Pharmacoepidemiol Drug Saf. 2011 Nov;20(11):1138-49. doi: 10.1002/pds.2203. Epub 2011 Aug 24.

Abstract

PURPOSE

Chronic kidney disease (CKD) is a prevalent and important outcome and covariate in pharmacoepidemiology. The Health Improvement Network (THIN) in the UK represents a unique resource for population-based studies of CKD. We compiled a valid list of Read codes to identify subjects with moderate to advanced CKD.

METHODS

A cross-sectional validation study was performed to identify codes that best define CKD Stages 3-5. All subjects with at least one non-zero measure of serum creatinine after 1 January 2002 were included. Estimated glomerular filtration rate (eGFR) was calculated according to the Schwartz formula for subjects aged < 18 years and the Modification of Diet in Renal Disease formula for subjects aged ≥ 18 years. CKD was defined as an eGFR <60 mL/minute/1.73 m² on at least two occasions, more than 90 days apart.

RESULTS

The laboratory definition identified 230,426 subjects with CKD, for a period prevalence in 2008 of 4.56% (95%CI, 4.54-4.58). A list of 45 Read codes was compiled, which yielded a positive predictive value of 88.9% (95%CI, 88.7-89.1), sensitivity of 48.8%, negative predictive value of 86.5%, and specificity of 98.2%. Of the 11.1% of subjects with a code who did not meet the laboratory definition, 83.6% had at least one eGFR <60. The most commonly used code was for CKD Stage 3.

CONCLUSIONS

The proposed list of codes can be used to accurately identify CKD when serum creatinine data are limited. The most sensitive approach for the detection of CKD is to use this list to supplement creatinine measures.

摘要

目的

慢性肾脏病(CKD)是药物流行病学中一种普遍且重要的结局和协变量。英国的健康改进网络(THIN)是进行 CKD 基于人群研究的独特资源。我们编制了一份有效的 Read 代码清单,以确定患有中重度 CKD 的患者。

方法

进行了一项横断面验证研究,以确定最能定义 CKD 3-5 期的代码。所有至少有一次血清肌酐非零测量值的患者,且测量值在 2002 年 1 月 1 日后。根据 Schwartz 公式计算年龄<18 岁患者的肾小球滤过率(eGFR),根据 Modification of Diet in Renal Disease 公式计算年龄≥18 岁患者的 eGFR。将至少两次相隔 90 天以上的 eGFR<60mL/min/1.73m²定义为 CKD。

结果

实验室定义确定了 230426 例 CKD 患者,2008 年的现患率为 4.56%(95%CI,4.54-4.58)。编制了一份 45 个 Read 代码清单,其阳性预测值为 88.9%(95%CI,88.7-89.1),敏感性为 48.8%,阴性预测值为 86.5%,特异性为 98.2%。在不符合实验室定义的 11.1%的患者中,83.6%至少有一次 eGFR<60。最常用的代码是 CKD 3 期。

结论

当血清肌酐数据有限时,可使用此 Read 代码清单准确识别 CKD。检测 CKD 最敏感的方法是使用此清单补充肌酐测量值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f226/3245984/9a9a638317f2/nihms334713f1.jpg

相似文献

引用本文的文献

本文引用的文献

4
Growth hormone treatment in short children with chronic kidney disease.慢性肾病患儿的生长激素治疗
Acta Paediatr. 2008 Sep;97(9):1159-64. doi: 10.1111/j.1651-2227.2008.00845.x.
10
Glomerular filtration rate measurement and estimation in chronic kidney disease.慢性肾脏病中肾小球滤过率的测量与估算
Pediatr Nephrol. 2007 Nov;22(11):1839-48. doi: 10.1007/s00467-006-0358-1. Epub 2007 Jan 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验