Suppr超能文献

燃料酒精生产:游离氨基氮对超高浓度小麦糖化醪发酵的影响

Fuel alcohol production: effects of free amino nitrogen on fermentation of very-high-gravity wheat mashes.

作者信息

Thomas K C, Ingledew W M

机构信息

Department of Applied Microbiology and Food Science, University of Saskatchewan, Saskatoon, Canada.

出版信息

Appl Environ Microbiol. 1990 Jul;56(7):2046-50. doi: 10.1128/aem.56.7.2046-2050.1990.

Abstract

Although wheat mashes contain only growth-limiting amounts of free amino nitrogen, fermentations by active dry yeast (Saccharomyces cerevisiae) were completed (all fermentable sugars consumed) in 8 days at 20 degrees C even when the mash contained 35 g of dissolved solids per 100 ml. Supplementing wheat mashes with yeast extract, Casamino Acids, or a single amino acid such as glutamic acid stimulated growth of the yeast and reduced the fermentation time. With 0.9% yeast extract as the supplement, the fermentation time was reduced from 8 to 3 days, and a final ethanol yield of 17.1% (vol/vol) was achieved. Free amino nitrogen derived in situ through the hydrolysis of wheat proteins by a protease could substitute for the exogenous nitrogen source. Studies indicated, however, that exogenously added glycine (although readily taken up by the yeast) reduced the cell yield and prolonged the fermentation time. The results suggested that there are qualitative differences among amino acids with regard to their suitability to serve as nitrogen sources for the growth of yeast. The complete utilization of carbohydrates in wheat mashes containing very little free amino nitrogen presumably resulted because they had the "right" kind of amino acids.

摘要

尽管小麦醪液中仅含有有限量的游离氨基氮以限制生长,但即使醪液中每100毫升含有35克溶解固体,在20摄氏度下,活性干酵母(酿酒酵母)发酵仍能在8天内完成(所有可发酵糖被消耗)。用酵母提取物、酪蛋白氨基酸或单一氨基酸(如谷氨酸)补充小麦醪液可刺激酵母生长并缩短发酵时间。以0.9%的酵母提取物作为补充剂时,发酵时间从8天缩短至3天,最终乙醇产量达到17.1%(体积/体积)。通过蛋白酶水解小麦蛋白原位产生的游离氨基氮可替代外源氮源。然而,研究表明,外源添加甘氨酸(尽管酵母很容易吸收)会降低细胞产量并延长发酵时间。结果表明,氨基酸在作为酵母生长氮源的适宜性方面存在质的差异。含有极少游离氨基氮的小麦醪液中碳水化合物的完全利用大概是因为它们含有“合适”种类的氨基酸。

相似文献

1
Fuel alcohol production: effects of free amino nitrogen on fermentation of very-high-gravity wheat mashes.
Appl Environ Microbiol. 1990 Jul;56(7):2046-50. doi: 10.1128/aem.56.7.2046-2050.1990.
3
Effect of nutrients on fermentation of pretreated wheat straw at very high dry matter content by Saccharomyces cerevisiae.
Appl Biochem Biotechnol. 2009 May;153(1-3):44-57. doi: 10.1007/s12010-008-8456-0. Epub 2008 Dec 18.
4
Effects of particulate materials and osmoprotectants on very-high-gravity ethanolic fermentation by Saccharomyces cerevisiae.
Appl Environ Microbiol. 1994 May;60(5):1519-24. doi: 10.1128/aem.60.5.1519-1524.1994.
5
Urea hydrogen peroxide reduces the numbers of lactobacilli, nourishes yeast, and leaves no residues in the ethanol fermentation.
Appl Environ Microbiol. 2000 Oct;66(10):4187-92. doi: 10.1128/AEM.66.10.4187-4192.2000.
6
Simultaneous saccharification and fermentation of native rye, wheat and triticale starch.
J Sci Food Agric. 2019 Aug 30;99(11):4904-4912. doi: 10.1002/jsfa.9718. Epub 2019 May 18.
7
Simultaneous hydrolysis and co-fermentation of whey lactose with wheat for ethanol production.
Bioresour Technol. 2016 Dec;221:616-624. doi: 10.1016/j.biortech.2016.09.063. Epub 2016 Sep 15.
8
Effects of lactobacilli on yeast-catalyzed ethanol fermentations.
Appl Environ Microbiol. 1997 Nov;63(11):4158-63. doi: 10.1128/aem.63.11.4158-4163.1997.

引用本文的文献

2
Microbial proteases and their applications.
Front Microbiol. 2023 Sep 14;14:1236368. doi: 10.3389/fmicb.2023.1236368. eCollection 2023.
3
Improving the productivity of malic acid by alleviating oxidative stress during Aspergillus niger fermentation.
Biotechnol Biofuels Bioprod. 2022 Dec 29;15(1):151. doi: 10.1186/s13068-022-02250-7.
4
Sorghum Malt Extract as a Growth Medium for Lactic Acid Bacteria Cultures: A Case of MNC 21.
Int J Microbiol. 2020 Dec 11;2020:6622207. doi: 10.1155/2020/6622207. eCollection 2020.
5
Physiological responses to acid stress by Saccharomyces cerevisiae when applying high initial cell density.
FEMS Yeast Res. 2016 Nov;16(7). doi: 10.1093/femsyr/fow072. Epub 2016 Sep 11.
7
Lysine inhibition of Saccharomyces cerevisiae: role of repressible L-lysine ε-aminotransferase.
World J Microbiol Biotechnol. 1994 Sep;10(5):572-5. doi: 10.1007/BF00367670.
9
Gpd1 and Gpd2 fine-tuning for sustainable reduction of glycerol formation in Saccharomyces cerevisiae.
Appl Environ Microbiol. 2011 Sep;77(17):5857-67. doi: 10.1128/AEM.05338-11. Epub 2011 Jul 1.
10
Very high gravity (VHG) ethanolic brewing and fermentation: a research update.
J Ind Microbiol Biotechnol. 2011 Sep;38(9):1133-44. doi: 10.1007/s10295-011-0999-3. Epub 2011 Jun 22.

本文引用的文献

2
High-gravity brewing: effects of nutrition on yeast composition, fermentative ability, and alcohol production.
Appl Environ Microbiol. 1984 Sep;48(3):639-46. doi: 10.1128/aem.48.3.639-646.1984.
3
4
Ethanol tolerance in yeasts.
Crit Rev Microbiol. 1986;13(3):219-80. doi: 10.3109/10408418609108739.
6
Addition of basic amino acids prevents G-1 arrest of nitrogen-starved cultures of Saccharomyces cerevisiae.
J Bacteriol. 1979 Mar;137(3):1447-8. doi: 10.1128/jb.137.3.1447-1448.1979.
7
Basic amino acid inhibition of cell division and macromolecular synthesis in Saccharomyces cerevisiae.
J Gen Microbiol. 1978 Sep;108(1):45-56. doi: 10.1099/00221287-108-1-45.
8
Two-carbon assimilative capacity and the induction of isocitrate lyase in Saccharomyces cerevisiae.
J Bacteriol. 1977 Mar;129(3):1343-8. doi: 10.1128/jb.129.3.1343-1348.1977.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验