Suppr超能文献

Gpd1 和 Gpd2 的精细调控可实现酿酒酵母中甘油形成的可持续减少。

Gpd1 and Gpd2 fine-tuning for sustainable reduction of glycerol formation in Saccharomyces cerevisiae.

机构信息

Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31–Bus 2438, B-3001 Heverlee, Flanders, Belgium.

出版信息

Appl Environ Microbiol. 2011 Sep;77(17):5857-67. doi: 10.1128/AEM.05338-11. Epub 2011 Jul 1.

Abstract

Gpd1 and Gpd2 are the two isoforms of glycerol 3-phosphate dehydrogenase (GPDH), which is the rate-controlling enzyme of glycerol formation in Saccharomyces cerevisiae. The two isoenzymes play crucial roles in osmoregulation and redox balancing. Past approaches to increase ethanol yield at the cost of reduced glycerol yield have most often been based on deletion of either one or two isogenes (GPD1 and GPD2). While single deletions of GPD1 or GPD2 reduced glycerol formation only slightly, the gpd1Δ gpd2Δ double deletion strain produced zero glycerol but showed an osmosensitive phenotype and abolished anaerobic growth. Our current approach has sought to generate "intermediate" phenotypes by reducing both isoenzyme activities without abolishing them. To this end, the GPD1 promoter was replaced in a gpd2Δ background by two lower-strength TEF1 promoter mutants. In the same manner, the activity of the GPD2 promoter was reduced in a gpd1Δ background. The resulting strains were crossed to obtain different combinations of residual GPD1 and GPD2 expression levels. Among our engineered strains we identified four candidates showing improved ethanol yields compared to the wild type. In contrast to a gpd1Δ gpd2Δ double-deletion strain, these strains were able to completely ferment the sugars under quasi-anaerobic conditions in both minimal medium and during simultaneous saccharification and fermentation (SSF) of liquefied wheat mash (wheat liquefact). This result implies that our strains can tolerate the ethanol concentration at the end of the wheat liquefact SSF (up to 90 g liter(-1)). Moreover, a few of these strains showed no significant reduction in osmotic stress tolerance compared to the wild type.

摘要

Gpd1 和 Gpd2 是甘油 3-磷酸脱氢酶 (GPDH) 的两种同工酶,GPDH 是酿酒酵母中甘油形成的限速酶。这两种同工酶在渗透调节和氧化还原平衡中起着至关重要的作用。过去提高乙醇产量、降低甘油产量的方法大多基于缺失一个或两个同工酶基因(GPD1 和 GPD2)。虽然 GPD1 或 GPD2 的单一缺失仅略微降低甘油的形成,但 gpd1Δ gpd2Δ 双缺失菌株几乎不产生甘油,但表现出对渗透压敏感的表型,并消除了厌氧生长。我们目前的方法是通过降低两种同工酶的活性而不使其失活来产生“中间”表型。为此,在 gpd2Δ 背景下,用两个较弱的 TEF1 启动子突变体替换 GPD1 启动子。同样,在 gpd1Δ 背景下降低 GPD2 启动子的活性。然后将这些菌株进行杂交,以获得不同的残留 GPD1 和 GPD2 表达水平的组合。在我们的工程菌株中,我们确定了四个候选菌株,与野生型相比,它们的乙醇产量有所提高。与 gpd1Δ gpd2Δ 双缺失菌株相比,这些菌株能够在最小培养基中和液化麦浆的同步糖化和发酵(SSF)过程中在准厌氧条件下完全发酵糖。这一结果表明,我们的菌株可以耐受液化麦浆 SSF 结束时的乙醇浓度(高达 90 g/L)。此外,与野生型相比,这些菌株中的少数在耐渗透压方面没有明显降低。

相似文献

1
Gpd1 and Gpd2 fine-tuning for sustainable reduction of glycerol formation in Saccharomyces cerevisiae.
Appl Environ Microbiol. 2011 Sep;77(17):5857-67. doi: 10.1128/AEM.05338-11. Epub 2011 Jul 1.
2
Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
Yeast. 2000 Mar 30;16(5):463-74. doi: 10.1002/(SICI)1097-0061(20000330)16:5<463::AID-YEA535>3.0.CO;2-3.
3
Interruption of glycerol pathway in industrial alcoholic yeasts to improve the ethanol production.
Appl Microbiol Biotechnol. 2009 Feb;82(2):287-92. doi: 10.1007/s00253-008-1777-7. Epub 2008 Nov 19.
7
3' Truncation of the GPD1 promoter in Saccharomyces cerevisiae for improved ethanol yield and productivity.
Appl Environ Microbiol. 2013 May;79(10):3273-81. doi: 10.1128/AEM.03319-12. Epub 2013 Mar 15.

引用本文的文献

1
Engineered S. cerevisiae construction for high-gravity ethanol production and targeted metabolomics.
Appl Microbiol Biotechnol. 2025 Mar 19;109(1):67. doi: 10.1007/s00253-025-13446-w.
2
Recent advances in genetic engineering and chemical production in yeast species.
FEMS Yeast Res. 2025 Jan 30;25. doi: 10.1093/femsyr/foaf009.
3
The Viral K1 Killer Yeast System: Toxicity, Immunity, and Resistance.
Yeast. 2024 Nov;41(11-12):668-680. doi: 10.1002/yea.3987. Epub 2025 Jan 24.
4
Enhancing freeze-thaw tolerance in baker's yeast: strategies and perspectives.
Food Sci Biotechnol. 2024 Jul 3;33(13):2953-2969. doi: 10.1007/s10068-024-01637-6. eCollection 2024 Oct.
7
Metabolic engineering for the production of acetoin and 2,3-butanediol at elevated temperature in NCIMB 11955.
Front Bioeng Biotechnol. 2023 May 2;11:1191079. doi: 10.3389/fbioe.2023.1191079. eCollection 2023.
8
Development of an industrial yeast strain for efficient production of 2,3-butanediol.
Microb Cell Fact. 2022 Sep 29;21(1):199. doi: 10.1186/s12934-022-01924-z.
9
D-Lactic Acid Production from Sugarcane Bagasse by Genetically Engineered .
J Fungi (Basel). 2022 Aug 3;8(8):816. doi: 10.3390/jof8080816.

本文引用的文献

1
Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance.
Metab Eng. 2011 Jan;13(1):49-59. doi: 10.1016/j.ymben.2010.11.003. Epub 2010 Nov 30.
3
Metabolic regulation rather than de novo enzyme synthesis dominates the osmo-adaptation of yeast.
Yeast. 2011 Jan;28(1):43-53. doi: 10.1002/yea.1819. Epub 2010 Aug 27.
5
Dynamic changes in the subcellular distribution of Gpd1p in response to cell stress.
J Biol Chem. 2010 Feb 26;285(9):6739-49. doi: 10.1074/jbc.M109.058552. Epub 2009 Dec 21.
7
Quantitative physiology of Saccharomyces cerevisiae at near-zero specific growth rates.
Appl Environ Microbiol. 2009 Sep;75(17):5607-14. doi: 10.1128/AEM.00429-09. Epub 2009 Jul 10.
8
Stress resistance and signal fidelity independent of nuclear MAPK function.
Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12212-7. doi: 10.1073/pnas.0805797105. Epub 2008 Aug 21.
9
The frequency dependence of osmo-adaptation in Saccharomyces cerevisiae.
Science. 2008 Jan 25;319(5862):482-4. doi: 10.1126/science.1151582.
10
Overexpression of GLT1 in fps1DeltagpdDelta mutant for optimum ethanol formation by Saccharomyces cerevisiae.
Biomol Eng. 2007 Dec;24(6):638-42. doi: 10.1016/j.bioeng.2007.10.003. Epub 2007 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验