Mössner Lone D, Schmitz Andrea, Theurillat Regula, Thormann Wolfgang, Mevissen Meike
Division of Veterinary Pharmacology & Toxicology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
Am J Vet Res. 2011 Nov;72(11):1505-13. doi: 10.2460/ajvr.72.11.1505.
To identify and characterize cytochrome P450 enzymes (CYPs) responsible for the metabolism of racemic ketamine in 3 mammalian species in vitro by use of chemical inhibitors and antibodies.
Human, canine, and equine liver microsomes and human single CYP3A4 and CYP2C9 and their canine orthologs.
Chemical inhibitors selective for human CYP enzymes and anti-CYP antibodies were incubated with racemic ketamine and liver microsomes or specific CYPs. Ketamine N-demethylation to norketamine was determined via enantioselective capillary electrophoresis.
The general CYP inhibitor 1-aminobenzotriazole almost completely blocked ketamine metabolism in human and canine liver microsomes but not in equine microsomes. Chemical inhibition of norketamine formation was dependent on inhibitor concentration in most circumstances. For all 3 species, inhibitors of CYP3A4, CYP2A6, CYP2C19, CYP2B6, and CYP2C9 diminished N-demethylation of ketamine. Anti-CYP3A4, anti-CYP2C9, and anti-CYP2B6 antibodies also inhibited ketamine N-demethylation. Chemical inhibition was strongest with inhibitors of CYP2A6 and CYP2C19 in canine and equine microsomes and with the CYP3A4 inhibitor in human microsomes. No significant contribution of CYP2D6 to ketamine biotransformation was observed. Although the human CYP2C9 inhibitor blocked ketamine N-demethylation completely in the canine ortholog CYP2C21, a strong inhibition was also obtained by the chemical inhibitors of CYP2C19 and CYP2B6. Ketamine N-demethylation was stereoselective in single human CYP3A4 and canine CYP2C21 enzymes.
Human-specific inhibitors of CYP2A6, CYP2C19, CYP3A4, CYP2B6, and CYP2C9 diminished ketamine N-demethylation in dogs and horses. To address drug-drug interactions in these animal species, investigations with single CYPs are needed.
通过使用化学抑制剂和抗体,在体外鉴定和表征负责三种哺乳动物外消旋氯胺酮代谢的细胞色素P450酶(CYPs)。
人、犬和马的肝微粒体以及人单一的CYP3A4和CYP2C9及其犬类直系同源物。
将对人CYP酶具有选择性的化学抑制剂和抗CYP抗体与外消旋氯胺酮及肝微粒体或特定的CYPs一起孵育。通过对映体选择性毛细管电泳测定氯胺酮N-去甲基化生成去甲氯胺酮的情况。
通用的CYP抑制剂1-氨基苯并三唑几乎完全阻断了人及犬肝微粒体中氯胺酮的代谢,但对马微粒体无此作用。在大多数情况下,去甲氯胺酮形成的化学抑制作用取决于抑制剂浓度。对于所有三种物种,CYP3A4、CYP2A6、CYP2C19、CYP2B6和CYP2C9的抑制剂均减少了氯胺酮的N-去甲基化。抗CYP3A4、抗CYP2C9和抗CYP2B6抗体也抑制了氯胺酮的N-去甲基化。在犬和马微粒体中,CYP2A6和CYP2C19的抑制剂化学抑制作用最强,在人微粒体中CYP3A4抑制剂的抑制作用最强。未观察到CYP2D6对氯胺酮生物转化有显著贡献。尽管人CYP2C9抑制剂在犬直系同源物CYP2C21中完全阻断了氯胺酮的N-去甲基化,但CYP2C19和CYP2B6的化学抑制剂也产生了强烈抑制作用。氯胺酮N-去甲基化在单一的人CYP3A4和犬CYP2C21酶中具有立体选择性。
人特异性的CYP2A6、CYP2C19、CYP3A4、CYP2B6和CYP2C9抑制剂减少了犬和马体内氯胺酮的N-去甲基化。为了解决这些动物物种中的药物相互作用问题,需要对单一的CYPs进行研究。