Department of Biology, University of San Diego, 5998 Alcalá Park, San Diego, CA 92110, USA.
J Comp Physiol B. 2012 Apr;182(3):321-9. doi: 10.1007/s00360-011-0624-9. Epub 2011 Oct 28.
Hyper-saline habitats (waters with salinity >35 ppt) are among the harshest aquatic environments. Relatively few species of teleost fish can tolerate salinities much above 50 ppt, because of the challenges to osmoregulation, but those that do, usually estuarine, euryhaline species, show a strong ability to osmoregulate in salinities well over 100 ppt. Typically, plasma Na(+) and Cl(-) concentrations rise slowly or not at all up to about 65 ppt. At higher salinities ion levels do rise, but the increase is small relative to the magnitude of increase in concentrations of the surrounding water. A number of adjustments are responsible for such strong osmoregulation. Reduced branchial water permeability is indicated by the observation that with the exposure to hyper-salinities drinking rates rise more slowly than the branchial osmotic gradient. Lower water permeability limits osmotic water loss and greatly reduces the salt load incurred in replacing it. Still, increased gut Na(+)/K(+)-ATPase (NAK) activity is necessary to absorb the larger gut salt load and increased HCO(3) (-) secretion is required to precipitate Ca(2+) and some Mg(2+) in the imbibed water to facilitate water absorption. All Na(+) and Cl(-) taken up must be excreted and increased branchial salt excreting capacity is indicated by elevated mitochondrion-rich cell density and size, gill NAK activity and expression of chloride channels. Excretion of Na(+) and Cl(-) occurs against a larger gradient than in seawater and calculation of the equilibrium potential for Na(+) across the gill epithelium indicates that the trans-epithelial potential required for excretion of Na(+) climbs with salinity up to about 65 ppt before leveling off due to the increasing plasma Na(+) levels. During acute transition to SW or mildly hyper-saline waters, some species have shown the ability to upregulate branchial NAK activity rapidly and this may play an important role in limiting disturbances at higher salinities. It does not appear that the opercular epithelium, which in SW acts in a way that is functionally similar to the gills, continues to do so in hyper-saline waters. Little is know about the hormones involved in acclimation to hyper-salinity, but the few studies available suggest a role for cortisol, but not growth hormone and insulin-like growth factor. Despite the increased transport capacity evident in both the gill and gut in hyper-saline waters there is no clear trend toward increased metabolic rate. These studies provide a general outline of the mechanisms of osmoregulation in these species, but significant questions still remain.
高盐栖息地(盐度大于 35 ppt 的水域)是最恶劣的水生环境之一。由于渗透调节的挑战,相对较少的硬骨鱼类能够耐受高于 50 ppt 的盐度,但那些能够耐受的鱼类,通常是河口、广盐性物种,在超过 100 ppt 的盐度下表现出很强的渗透调节能力。通常情况下,血浆中的 Na(+)和 Cl(-)浓度上升缓慢或根本不上升,直到大约 65 ppt。在更高的盐度下,离子水平确实会上升,但与周围水浓度的增加幅度相比,增加幅度很小。有许多调整负责如此强烈的渗透调节。减少鳃部水通透性的迹象是,随着暴露在高盐度环境中,摄水率的上升速度比鳃渗透梯度的上升速度慢。较低的水通透性限制了渗透失水,并大大减少了在替代过程中产生的盐负荷。尽管如此,增加肠道 Na(+)/K(+) - ATP 酶(NAK)的活性是必需的,以吸收更大的肠道盐负荷,增加 HCO(3) (-)的分泌是必需的,以沉淀在吸收的水中的 Ca(2+)和一些 Mg(2+),以促进水的吸收。所有吸收的 Na(+)和 Cl(-)都必须排泄,增加鳃部盐排泄能力的迹象是富含线粒体的细胞密度和大小增加、鳃部 NAK 活性和氯离子通道的表达。Na(+)和 Cl(-)的排泄是在比海水更大的梯度下进行的,计算跨鳃上皮的 Na(+)平衡电位表明,在大约 65 ppt 之前,为了排泄 Na(+)而需要的跨上皮电位会随着盐度的升高而升高,因为血浆 Na(+)水平不断升高。在急性过渡到 SW 或轻度高盐水中时,一些物种表现出迅速上调鳃部 NAK 活性的能力,这在高盐度下可能限制干扰方面发挥重要作用。在高盐水中,似乎不起作用的鳃盖上皮,在 SW 中以与鳃相似的功能方式起作用,在高盐水中不再如此。关于适应高盐度的激素知之甚少,但现有研究表明皮质醇起作用,但生长激素和胰岛素样生长因子不起作用。尽管在高盐水中鳃和肠道的运输能力明显增加,但代谢率没有明显增加的趋势。这些研究提供了这些物种渗透调节机制的一般概述,但仍存在一些悬而未决的问题。