Liu Yu, Gu Libo, Zhao Jun, Liu Mengzhu, Wang Ke, Zhou Qingbo, Cao Yang, Hu Ruyi, Wang Weiwei, Liu Qing
College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China.
Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong, 030801, China.
BMC Genomics. 2025 Jul 1;26(1):590. doi: 10.1186/s12864-025-11773-w.
Acute salinity stress critically impacts aquaculture efficiency by inducing physiological disruptions in fish. This study investigated the molecular adaptation mechanisms of exposed to 10 ppt NaCl for 96 h, integrating transcriptomic and metabolomic analyses of gill and kidney tissues. In transcriptomics, 2,554 and 1,066 differentially expressed genes (DEGs) were identified in gills and kidneys, respectively, with significant enrichment in pathways related to energy metabolism (glycolysis, oxidative phosphorylation), membrane dynamics (glycerophospholipid metabolism), and immune-osmoregulatory crosstalk (HIF-1, TNF, and Jak-STAT signaling). Metabolomics revealed 85 and 433 differential metabolites (DMs) in gills and kidneys, highlighting tyrosine metabolism, amino acid biosynthesis/degradation, and lipid remodeling (e.g., glycerophospholipids, sphingolipids). Multi-organ coordination was observed: gills prioritized short-term osmotic adaptation via membrane lipid reorganization but suffered oxidative damage due to sustained downregulation of and , triggering a “membrane injury–oxidative stress-ATP depletion” cycle. Conversely, kidneys-maintained energy homeostasis through purine/pyrimidine-TCA cycle reprogramming and autophagy-apoptosis balance. Critically, interorgan metabolic crosstalk-mediated by lipid mediators (prostaglandins, sphingolipids) and amino acid derivatives (branched-chain keto acids, glutamine)—orchestrated substrate shuttling (e.g., lactate for energy exchange) and systemic signaling, bridging local stress responses (gill ion regulation) with global metabolic adjustments (renal energy buffering). Notably, the levels of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) in the kidney and phosphatidic acid (PA) and PC in the gills were significantly increased, while sphingomyelin (SM) decreased. Our findings demonstrate that acute salinity stress induces organ-specific metabolic reprogramming and interorgan crosstalk in . , revealing a trade-off between osmotic adaptation and oxidative stress resilience mediated by lipid remodeling and energy metabolism dysregulation.
The online version contains supplementary material available at 10.1186/s12864-025-11773-w.
急性盐度胁迫通过诱导鱼类生理紊乱严重影响水产养殖效率。本研究通过整合鳃和肾脏组织的转录组学和代谢组学分析,研究了暴露于10ppt NaCl 96小时的[鱼的品种未提及]的分子适应机制。在转录组学中,鳃和肾脏中分别鉴定出2554个和1066个差异表达基因(DEG),在与能量代谢(糖酵解、氧化磷酸化)、膜动力学(甘油磷脂代谢)和免疫-渗透调节串扰(HIF-1、TNF和Jak-STAT信号传导)相关的途径中显著富集。代谢组学揭示了鳃和肾脏中的85种和433种差异代谢物(DM),突出了酪氨酸代谢、氨基酸生物合成/降解和脂质重塑(如甘油磷脂、鞘脂)。观察到多器官协调:鳃通过膜脂重组优先进行短期渗透适应,但由于[基因未提及]和[基因未提及]的持续下调而遭受氧化损伤,引发“膜损伤-氧化应激-ATP消耗”循环。相反,肾脏通过嘌呤/嘧啶-TCA循环重编程和自噬-凋亡平衡维持能量稳态。至关重要的是,由脂质介质(前列腺素、鞘脂)和氨基酸衍生物(支链酮酸、谷氨酰胺)介导的器官间代谢串扰——精心安排底物穿梭(如用于能量交换的乳酸)和全身信号传导,将局部应激反应(鳃离子调节)与整体代谢调整(肾脏能量缓冲)联系起来。值得注意的是,肾脏中的磷脂酰胆碱(PC)和磷脂酰乙醇胺(PE)以及鳃中的磷脂酸(PA)和PC水平显著增加,而鞘磷脂(SM)减少。我们的研究结果表明,急性盐度胁迫在[鱼的品种未提及]中诱导器官特异性代谢重编程和器官间串扰,揭示了脂质重塑和能量代谢失调介导的渗透适应和氧化应激恢复力之间的权衡。
在线版本包含可在10.1186/s12864-025-11773-w获取的补充材料。