Suppr超能文献

DNA结构多态性调节BamHI限制性内切核酸酶对超螺旋DNA的切割动力学。

DNA structural polymorphism modulates the kinetics of superhelical DNA cleavage by BamHI restriction endonuclease.

作者信息

Nardone G, Wastney M E, Hensley P

机构信息

Department of Biochemistry, Georgetown University Medical Center, Washington, D.C. 20007.

出版信息

J Biol Chem. 1990 Sep 5;265(25):15308-15.

PMID:2203775
Abstract

A compartmental model developed by Hensley (Hensley, P., Nardone, G., Chirikjian, J.G., and Wastney, M. E., (1990) J. Biol. Chem. 265, 15300-15307) for analysis of the time courses of the cleavage of superhelical DNA substrates by the restriction endonuclease, BamHI, has been used to quantify the effects of changes in temperature, ionic strength, superhelical density, and the DNA substrate on the binding and strand cleavage processes. Studies reported here indicate that changes in topology may be introduced into the DNA substrate solely as a result of the plasmid preparation process and in the absence of covalent bond cleavage and ligation. These changes in topology have qualitatively different effects on the kinetics than those promoted by changes in the superhelical density. The former are removed by briefly warming the DNA prior to assay, suggesting that they are only kinetically stable, while the latter changes are not affected by heating. Increasing the [NaCl] from 0.01 M to 0.1 M increases the overall rate of plasmid cleavage by increasing both the rates of cleavage and enzyme DNA association. To describe the decrease in the overall cleavage rate observed in 0.15 M NaCl, an ionic strength-dependent rate-determining structural transition in the DNA substrate was incorporated into the model. The largest changes in the rate of the cleavage process resulted from changes in the DNA substrate. For the SV40 substrate compared to pBR322, the rate constants describing the two association processes and the first bond cleavage event were increased 6- to 7-fold. The rate of the second bond cleavage process was not affected. These changes may be due to differences in the flanking sequences.

摘要

亨斯利(Hensley, P., Nardone, G., Chirikjian, J.G., 和Wastney, M. E., (1990) J. Biol. Chem. 265, 15300 - 15307)开发的一种用于分析限制性内切酶BamHI切割超螺旋DNA底物时间进程的区室模型,已被用于量化温度、离子强度、超螺旋密度和DNA底物变化对结合及链切割过程的影响。此处报道的研究表明,拓扑结构的变化可能仅由于质粒制备过程而引入到DNA底物中,且不存在共价键的切割和连接。这些拓扑结构的变化对动力学的影响与超螺旋密度变化所引发的影响在性质上不同。前者可通过在测定前短暂加热DNA而消除,这表明它们只是动力学上稳定的,而后者的变化不受加热影响。将[NaCl]从0.01 M增加到0.1 M,通过提高切割速率和酶与DNA结合速率,增加了质粒切割的总体速率。为了描述在0.15 M NaCl中观察到的总体切割速率的降低,DNA底物中一个依赖离子强度的速率决定结构转变被纳入模型。切割过程速率的最大变化源于DNA底物的变化。与pBR322相比,对于SV40底物,描述两个结合过程和第一个键切割事件的速率常数增加了6至7倍。第二个键切割过程的速率不受影响。这些变化可能是由于侧翼序列的差异。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验