Statistical Laboratory, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, UK.
Philos Trans A Math Phys Eng Sci. 2011 Dec 13;369(1956):4730-50. doi: 10.1098/rsta.2011.0163.
Numerous types of uncertainty arise when using formal models in the analysis of risks. Uncertainty is best seen as a relation, allowing a clear separation of the object, source and 'owner' of the uncertainty, and we argue that all expressions of uncertainty are constructed from judgements based on possibly inadequate assumptions, and are therefore contingent. We consider a five-level structure for assessing and communicating uncertainties, distinguishing three within-model levels--event, parameter and model uncertainty--and two extra-model levels concerning acknowledged and unknown inadequacies in the modelling process, including possible disagreements about the framing of the problem. We consider the forms of expression of uncertainty within the five levels, providing numerous examples of the way in which inadequacies in understanding are handled, and examining criticisms of the attempts taken by the Intergovernmental Panel on Climate Change to separate the likelihood of events from the confidence in the science. Expressing our confidence in the adequacy of the modelling process requires an assessment of the quality of the underlying evidence, and we draw on a scale that is widely used within evidence-based medicine. We conclude that the contingent nature of risk-modelling needs to be explicitly acknowledged in advice given to policy-makers, and that unconditional expressions of uncertainty remain an aspiration.
在使用形式模型分析风险时,会产生多种类型的不确定性。不确定性最好被视为一种关系,能够清晰地区分不确定性的对象、来源和“所有者”,我们认为所有不确定性的表达都是基于可能不充分的假设进行判断的结果,因此具有偶然性。我们考虑了一种用于评估和沟通不确定性的五级结构,区分了模型内的三个级别——事件、参数和模型不确定性,以及两个与建模过程中已知和未知不足之处有关的模型外级别,包括对问题框架可能存在的分歧。我们考虑了五级结构内不确定性的表达形式,提供了大量关于处理理解不足之处的方式的示例,并研究了对政府间气候变化专门委员会(IPCC)试图将事件的可能性与对科学的信心分开的批评。对建模过程的充分性表示信心需要对基础证据的质量进行评估,我们借鉴了循证医学中广泛使用的一个尺度。我们的结论是,风险建模的偶然性需要在向决策者提供的建议中明确承认,无条件的不确定性表达仍然是一个愿望。