Suppr超能文献

短程杂化泛函方法研究金属-分子界面的电子能级排列。

Electronic level alignment at a metal-molecule interface from a short-range hybrid functional.

机构信息

Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100, Israel.

出版信息

J Chem Phys. 2011 Oct 28;135(16):164706. doi: 10.1063/1.3655357.

Abstract

Hybrid functionals often exhibit a marked improvement over semi-local functionals in the description of the electronic structure of organic materials. Because short-range hybrid functionals, notably the Heyd-Scuseria-Ernzerhof (HSE) functional, can also describe the electronic structure of metals reasonably well, it is interesting to examine to which extent they can correctly describe the electronic structure at metal-organic interfaces. Here, we address this question by comparing HSE calculations with many-body perturbation theory calculations in the GW approximation, or with experimental photoemission data, for two prototypical systems: benzene on graphite and benzene diamine on gold. For both cases, we find that while HSE yields results that are somewhat closer to experiment than those of semi-local functionals, the HSE prediction is still lacking quantitatively by ∼1 eV. We show that this quantitative failure arises because HSE does not correctly capture the fundamental gap of the organic or its renormalization by the metal. These discrepancies are traced back to missing long-range exchange and correlation components, an explanation which applies to any conventional or short-range hybrid functional.

摘要

杂化泛函在描述有机材料的电子结构方面通常优于半局域泛函。由于短程杂化泛函(特别是 Heyday-Scuseria-Ernzerhof [HSE] 泛函)也可以合理地描述金属的电子结构,因此研究它们在多大程度上可以正确描述金属-有机界面的电子结构是很有趣的。在这里,我们通过将 HSE 计算与 GW 近似的多体微扰理论计算或实验光电子能谱数据进行比较,来回答这个问题,针对两个典型的体系:苯在石墨上和苯二胺在金上。对于这两种情况,我们发现,尽管 HSE 的结果比半局域泛函更接近实验,但 HSE 的预测仍然缺乏约 1 eV 的定量准确性。我们表明,这种定量失效是由于 HSE 不能正确捕捉有机材料的基本间隙或其被金属的重整化。这些差异可以追溯到缺少长程交换和相关分量,这一解释适用于任何常规或短程杂化泛函。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验