Suppr超能文献

理解有机自组装单分子层X射线光电子能谱中的化学位移与静电位移

Understanding Chemical versus Electrostatic Shifts in X-ray Photoelectron Spectra of Organic Self-Assembled Monolayers.

作者信息

Taucher Thomas C, Hehn Iris, Hofmann Oliver T, Zharnikov Michael, Zojer Egbert

机构信息

Institute of Solid State Physics, NAWI Graz, Graz University of Technology , Petersgasse 16, 8010 Graz, Austria.

Angewandte Physikalische Chemie, Universität Heidelberg , Im Neuenheimer Feld 253, 69120 Heidelberg, Germany.

出版信息

J Phys Chem C Nanomater Interfaces. 2016 Feb 18;120(6):3428-3437. doi: 10.1021/acs.jpcc.5b12387. Epub 2016 Jan 25.

Abstract

The focus of the present article is on understanding the insight that X-ray photoelectron spectroscopy (XPS) measurements can provide when studying self-assembled monolayers. Comparing density functional theory calculations to experimental data on deliberately chosen model systems, we show that both the chemical environment and electrostatic effects arising from a superposition of molecular dipoles influence the measured core-level binding energies to a significant degree. The crucial role of the often overlooked electrostatic effects in polar self-assembled monolayers (SAMs) is unambiguously demonstrated by changing the dipole density through varying the SAM coverage. As a consequence of this effect, care has to be taken when extracting chemical information from the XP spectra of ordered organic adsorbate layers. Our results, furthermore, imply that XPS is a powerful tool for probing local variations in the electrostatic energy in nanoscopic systems, especially in SAMs.

摘要

本文的重点是理解在研究自组装单分子层时X射线光电子能谱(XPS)测量所能提供的见解。通过将密度泛函理论计算与特意选择的模型体系的实验数据进行比较,我们表明,化学环境以及分子偶极叠加产生的静电效应在很大程度上影响着所测量的芯能级结合能。通过改变自组装单分子层(SAMs)的覆盖度来改变偶极密度,明确证明了在极性自组装单分子层中常常被忽视的静电效应的关键作用。由于这种效应,在从有序有机吸附层的X射线光电子能谱(XP)中提取化学信息时必须格外小心。此外,我们的结果表明,XPS是探测纳米系统中静电能局部变化的有力工具,尤其是在自组装单分子层中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbb5/4761973/69df83c06c2d/jp-2015-12387j_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验