Suppr超能文献

淋巴瘤 CT 连续扫描的自动时间跟踪和分割。

Automated temporal tracking and segmentation of lymphoma on serial CT examinations.

机构信息

Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA.

出版信息

Med Phys. 2011 Nov;38(11):5879-86. doi: 10.1118/1.3643027.

Abstract

PURPOSE

It is challenging to reproducibly measure and compare cancer lesions on numerous follow-up studies; the process is time-consuming and error-prone. In this paper, we show a method to automatically and reproducibly identify and segment abnormal lymph nodes in serial computed tomography (CT) exams.

METHODS

Our method leverages initial identification of enlarged (abnormal) lymph nodes in the baseline scan. We then identify an approximate region for the node in the follow-up scans using nonrigid image registration. The baseline scan is also used to locate regions of normal, non-nodal tissue surrounding the lymph node and to map them onto the follow-up scans, in order to reduce the search space to locate the lymph node on the follow-up scans. Adaptive region-growing and clustering algorithms are then used to obtain the final contours for segmentation. We applied our method to 24 distinct enlarged lymph nodes at multiple time points from 14 patients. The scan at the earlier time point was used as the baseline scan to be used in evaluating the follow-up scan, resulting in 70 total test cases (e.g., a series of scans obtained at 4 time points results in 3 test cases). For each of the 70 cases, a "reference standard" was obtained by manual segmentation by a radiologist. Assessment according to response evaluation criteria in solid tumors (RECIST) using our method agreed with RECIST assessments made using the reference standard segmentations in all test cases, and by calculating node overlap ratio and Hausdorff distance between the computer and radiologist-generated contours.

RESULTS

Compared to the reference standard, our method made the correct RECIST assessment for all 70 cases. The average overlap ratio was 80.7 ± 9.7% s.d., and the average Hausdorff distance was 3.2 ± 1.8 mm s.d. The concordance correlation between automated and manual segmentations was 0.978 (95% confidence interval 0.962, 0.984). The 100% agreement in our sample between our method and the standard with regard to RECIST classification suggests that the true disagreement rate is no more than 6%.

CONCLUSIONS

Our automated lymph node segmentation method achieves excellent overall segmentation performance and provides equivalent RECIST assessment. It potentially will be useful to streamline and improve cancer lesion measurement and tracking and to improve assessment of cancer treatment response.

摘要

目的

在多项随访研究中,重复测量和比较癌症病变具有挑战性;这个过程既耗时又容易出错。在本文中,我们展示了一种自动且可重复地识别和分割连续计算机断层扫描(CT)检查中异常淋巴结的方法。

方法

我们的方法利用基线扫描中对增大(异常)淋巴结的初步识别。然后,我们使用非刚性图像配准在随访扫描中识别淋巴结的大致区域。基线扫描还用于定位淋巴结周围正常的非淋巴结组织区域,并将其映射到随访扫描上,以便在随访扫描上定位淋巴结时缩小搜索空间。然后使用自适应区域生长和聚类算法获得分割的最终轮廓。我们将该方法应用于 14 名患者的 24 个不同时间点的肿大淋巴结。较早时间点的扫描用作基线扫描,用于评估随访扫描,总共产生了 70 个测试病例(例如,在 4 个时间点获得的一系列扫描产生 3 个测试病例)。对于每个 70 个病例,由放射科医生手动分割获得“参考标准”。使用我们的方法根据实体瘤反应评估标准(RECIST)进行的评估与使用参考标准分割进行的评估在所有测试病例中均一致,通过计算计算机和放射科医生生成轮廓之间的节点重叠比和 Hausdorff 距离来进行评估。

结果

与参考标准相比,我们的方法在所有 70 个病例中均做出了正确的 RECIST 评估。平均重叠比为 80.7 ± 9.7%标准差,平均 Hausdorff 距离为 3.2 ± 1.8 毫米标准差。自动和手动分割之间的一致性相关系数为 0.978(95%置信区间 0.962,0.984)。我们的方法与标准在 RECIST 分类方面的 100%一致性表明,真实的不一致率不超过 6%。

结论

我们的自动淋巴结分割方法实现了出色的整体分割性能,并提供了等效的 RECIST 评估。它有可能用于简化和改进癌症病变的测量和跟踪,并提高癌症治疗反应的评估。

相似文献

2
Snake model-based lymphoma segmentation for sequential CT images.基于蛇模型的淋巴瘤 CT 序列图像分割。
Comput Methods Programs Biomed. 2013 Aug;111(2):366-75. doi: 10.1016/j.cmpb.2013.05.019. Epub 2013 Jun 17.
9
Automating the tracking of lymph nodes in follow-up studies of thoracic CT images.在胸部 CT 图像的随访研究中自动跟踪淋巴结。
Comput Methods Programs Biomed. 2012 Jun;106(3):150-9. doi: 10.1016/j.cmpb.2010.09.003. Epub 2010 Oct 8.

引用本文的文献

1
Translation of AI into oncology clinical practice.人工智能在肿瘤临床实践中的应用。
Oncogene. 2023 Oct;42(42):3089-3097. doi: 10.1038/s41388-023-02826-z. Epub 2023 Sep 8.
3
Tracking Metastatic Brain Tumors in Longitudinal Scans via Joint Image Registration and Labeling.通过联合图像配准和标记在纵向扫描中追踪转移性脑肿瘤
Spatiotemporal Image Anal Longitud Time Ser Image Data (2012). 2012 Oct;7570:124-136. doi: 10.1007/978-3-642-33555-6_11.
6
Imaging genomics in cancer research: limitations and promises.癌症研究中的影像基因组学:局限与前景
Br J Radiol. 2016;89(1061):20151030. doi: 10.1259/bjr.20151030. Epub 2016 Feb 11.
10
Snake model-based lymphoma segmentation for sequential CT images.基于蛇模型的淋巴瘤 CT 序列图像分割。
Comput Methods Programs Biomed. 2013 Aug;111(2):366-75. doi: 10.1016/j.cmpb.2013.05.019. Epub 2013 Jun 17.

本文引用的文献

2
Intensity-based image registration by minimizing residual complexity.基于残差复杂度最小化的强度图像配准。
IEEE Trans Med Imaging. 2010 Nov;29(11):1882-91. doi: 10.1109/TMI.2010.2053043. Epub 2010 Jun 17.
3
Interactive determination of robust safety margins for oncologic liver surgery.交互式确定肿瘤肝切除术的稳健安全边界。
Int J Comput Assist Radiol Surg. 2009 Sep;4(5):469-74. doi: 10.1007/s11548-009-0359-1. Epub 2009 Jun 4.
6
Pulmonary lobe segmentation in CT examinations using implicit surface fitting.利用隐式曲面拟合进行 CT 检查中的肺叶分割。
IEEE Trans Med Imaging. 2009 Dec;28(12):1986-96. doi: 10.1109/TMI.2009.2027117. Epub 2009 Jul 21.
9
Computer-aided diagnosis in lung nodule assessment.肺结节评估中的计算机辅助诊断
J Thorac Imaging. 2008 May;23(2):97-104. doi: 10.1097/RTI.0b013e318173dd1f.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验