Suppr超能文献

使用带有错误检测的混合方法从胸部计算机断层扫描中自动进行肺部分割。

Automatic lung segmentation from thoracic computed tomography scans using a hybrid approach with error detection.

作者信息

van Rikxoort Eva M, de Hoop Bartjan, Viergever Max A, Prokop Mathias, van Ginneken Bram

机构信息

Image Sciences Institute, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.

出版信息

Med Phys. 2009 Jul;36(7):2934-47. doi: 10.1118/1.3147146.

Abstract

Lung segmentation is a prerequisite for automated analysis of chest CT scans. Conventional lung segmentation methods rely on large attenuation differences between lung parenchyma and surrounding tissue. These methods fail in scans where dense abnormalities are present, which often occurs in clinical data. Some methods to handle these situations have been proposed, but they are too time consuming or too specialized to be used in clinical practice. In this article, a new hybrid lung segmentation method is presented that automatically detects failures of a conventional algorithm and, when needed, resorts to a more complex algorithm, which is expected to produce better results in abnormal cases. In a large quantitative evaluation on a database of 150 scans from different sources, the hybrid method is shown to perform substantially better than a conventional approach at a relatively low increase in computational cost.

摘要

肺部分割是胸部CT扫描自动分析的前提条件。传统的肺部分割方法依赖于肺实质与周围组织之间较大的衰减差异。这些方法在存在密集异常的扫描中会失效,而这种情况在临床数据中经常出现。已经提出了一些处理这些情况的方法,但它们要么耗时过长,要么过于专门化,无法应用于临床实践。在本文中,提出了一种新的混合肺部分割方法,该方法能自动检测传统算法的失败情况,并在需要时采用更复杂的算法,预计在异常情况下能产生更好的结果。在对来自不同来源的150幅扫描图像数据库进行的大规模定量评估中,混合方法在计算成本相对较低增加的情况下,表现明显优于传统方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验