Suppr超能文献

为什么和系统如何在热波动的环境中反应?

Why and how do systems react in thermally fluctuating environments?

机构信息

Molecule & Life Nonlinear Sciences Laboratory, Research Institute for Electronic Science, Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo 001-0020, Japan.

出版信息

Phys Chem Chem Phys. 2011 Dec 28;13(48):21217-29. doi: 10.1039/c1cp22504a. Epub 2011 Nov 2.

Abstract

Many chemical reactions, including those of biological importance, take place in thermally fluctuating environments. Compared to isolated systems, there arise markedly different features due to the effects of energy dissipation through friction and stochastic driving by random forces reflecting the fluctuation of the environment. Investigation of how robustly the system reacts under the influence of thermal fluctuation, and elucidating the role of thermal fluctuation in the reaction are significant subjects in the study of chemical reactions. In this article, we start with overviewing the generalized Langevin equation (GLE), which has long been used and continues to be a powerful tool to describe a system surrounded by a thermal environment. It has been also generalized further to treat a nonstationary environment, in which the conventional fluctuation-dissipation theorem no longer holds. Then, within the framework of the Langevin equation we present a method recently developed to extract a new reaction coordinate that is decoupled from all the other coordinates in the region of a rank-one saddle linking the reactant and the product. The reaction coordinate is buried in nonlinear couplings among the original coordinates under the influence of stochastic random force. It was ensured that the sign of this new reaction coordinate (= a nonlinear functional of the original coordinates, velocities, friction, and random force) at any instant is sufficient to determine in which region, the reactant or the product, the system finally arrives. We also discuss how one can extend the method to extract such a coordinate from the GLE framework in stationary and nonstationary environments, where memory effects exist in dynamics of the reaction.

摘要

许多化学反应,包括那些具有生物学重要性的化学反应,都发生在热涨落的环境中。与孤立系统相比,由于通过摩擦耗散能量以及随机力的随机驱动对环境涨落的影响,会出现明显不同的特征。研究系统在热涨落影响下的反应稳健性,阐明热涨落在反应中的作用,是化学反应研究中的重要课题。在本文中,我们首先概述了广义朗之万方程(GLE),它长期以来一直被用于描述处于热环境中的系统,并且仍然是一种强大的工具。它还进一步推广到处理非定常环境,在这种环境中,传统的涨落耗散定理不再成立。然后,在朗之万方程的框架内,我们提出了一种最近发展的方法,用于提取一个新的反应坐标,该坐标与反应物和产物之间的一级鞍点的所有其他坐标解耦。在随机力的影响下,反应坐标埋藏在原始坐标之间的非线性耦合中。可以保证,在任何时刻,这个新的反应坐标的符号(=原始坐标、速度、摩擦和随机力的非线性函数)足以确定系统最终到达哪个区域,是反应物还是产物。我们还讨论了如何从 GLE 框架中在存在记忆效应的反应动力学的定态和非定态环境中提取这样的坐标。

相似文献

1
Why and how do systems react in thermally fluctuating environments?为什么和系统如何在热波动的环境中反应?
Phys Chem Chem Phys. 2011 Dec 28;13(48):21217-29. doi: 10.1039/c1cp22504a. Epub 2011 Nov 2.
5
Hierarchy of reaction dynamics in a thermally fluctuating environment.热涨落环境中的反应动力学层次结构。
Phys Chem Chem Phys. 2010 Jul 21;12(27):7626-35. doi: 10.1039/b922080a. Epub 2010 Jun 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验