Suppr超能文献

从含时多体哈密顿量推导非平衡广义朗之万方程

Derivation of the nonequilibrium generalized Langevin equation from a time-dependent many-body Hamiltonian.

作者信息

Netz Roland R

机构信息

Fachbereich Physik, <a href="https://ror.org/046ak2485">Freie Universität Berlin</a>, 14195 Berlin, Germany and Centre for Condensed Matter Theory, Department of Physics, <a href="https://ror.org/04dese585">Indian Institute of Science</a>, Bangalore 560012, India.

出版信息

Phys Rev E. 2024 Jul;110(1-1):014123. doi: 10.1103/PhysRevE.110.014123.

Abstract

It has become standard practice to describe systems that remain far from equilibrium even in their steady state by Langevin equations with colored noise which is chosen independently from the friction contribution. Since these Langevin equations are typically not derived from first-principle Hamiltonian dynamics, it is not clear whether they correspond to physically realizable scenarios. By exact Mori projection in phase space we derive the nonequilibrium generalized Langevin equation (GLE) for an arbitrary phase-space dependent observable A from a generic many-body Hamiltonian with a time-dependent external force h(t) acting on the same observable A. This is the same Hamiltonian from which the standard fluctuation-dissipation theorem is derived, which reflects the generality of our approach. The observable A could, for example, be the position of an atom, of a molecule or of a macroscopic object, the distance between two such entities or a more complex phase-space function such as the reaction coordinate of a chemical reaction or of the folding of a protein. The Hamiltonian could, for example, describe a fluid, a solid, a viscoelastic medium, or even a turbulent inhomogeneous environment. The GLE, which is a closed-form equation of motion for the observable A, is obtained in explicit form to all orders in h(t) and without restrictions on the type of many-body Hamiltonian or the observable A. If the dynamics of the observable A corresponds to a Gaussian process, the resultant GLE has a similar form as the equilibrium Mori GLE, and in particular the friction memory kernel is given by the two-point autocorrelation function of the sum of the complementary and the external force h(t). This is a nontrivial and useful result, as many observables that characterize nonequilibrium systems display Gaussian statistics. For non-Gaussian nonequilibrium observables correction terms appear in the GLE and in the relation between the force autocorrelation and the friction memory kernel, which are explicitly given in terms of cubic correlation functions of A. Interpreting the external force h(t) as a stochastic process, we derive nonequilibrium corrections to the fluctuation-dissipation theorem and present methods to extract all GLE parameters from experimental or simulation time-series data, thus making our nonequilibrium GLE a practical tool to study and model general nonequilibrium systems.

摘要

用带有与摩擦贡献无关的有色噪声的朗之万方程来描述即使在稳态下仍远离平衡的系统,已成为标准做法。由于这些朗之万方程通常并非从第一性原理哈密顿动力学推导而来,所以尚不清楚它们是否对应于物理上可实现的情形。通过相空间中的精确森投影,我们从一个具有作用于同一可观测量(A)的含时外力(h(t))的一般多体哈密顿量出发,为任意依赖于相空间的可观测量(A)推导了非平衡广义朗之万方程(GLE)。这与推导标准涨落耗散定理所依据的哈密顿量相同,这反映了我们方法的一般性。例如,可观测量(A)可以是一个原子、一个分子或一个宏观物体的位置,两个这样的实体之间的距离,或者一个更复杂的相空间函数,比如化学反应或蛋白质折叠的反应坐标。哈密顿量例如可以描述一种流体、一种固体、一种粘弹性介质,甚至是一个湍流的非均匀环境。GLE是可观测量(A)的一个封闭形式的运动方程,以(h(t))的所有阶显式形式得到,且对多体哈密顿量的类型或可观测量(A)没有限制。如果可观测量(A)的动力学对应于一个高斯过程,所得的GLE具有与平衡态森GLE相似的形式,特别是摩擦记忆核由互补力与外力(h(t))之和的两点自相关函数给出。这是一个重要且有用的结果,因为许多表征非平衡系统的可观测量呈现高斯统计。对于非高斯非平衡可观测量,GLE以及力自相关与摩擦记忆核之间的关系中会出现修正项,这些修正项以(A)的三次相关函数明确给出。将外力(h(t))解释为一个随机过程,我们推导了涨落耗散定理的非平衡修正,并提出了从实验或模拟时间序列数据中提取所有GLE参数的方法,从而使我们的非平衡GLE成为研究和建模一般非平衡系统的实用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验