Suppr超能文献

纵向生物标志物数据的岭回归

Ridge regression for longitudinal biomarker data.

作者信息

Eliot Melissa, Ferguson Jane, Reilly Muredach P, Foulkes Andrea S

机构信息

University of Massachusetts Amherst, USA.

出版信息

Int J Biostat. 2011;7(1):Article 37. doi: 10.2202/1557-4679.1353. Epub 2011 Sep 27.

Abstract

Technological advances facilitating the acquisition of large arrays of biomarker data have led to new opportunities to understand and characterize disease progression over time. This creates an analytical challenge, however, due to the large numbers of potentially informative markers, the high degrees of correlation among them, and the time-dependent trajectories of association. We propose a mixed ridge estimator, which integrates ridge regression into the mixed effects modeling framework in order to account for both the correlation induced by repeatedly measuring an outcome on each individual over time, as well as the potentially high degree of correlation among possible predictor variables. An expectation-maximization algorithm is described to account for unknown variance and covariance parameters. Model performance is demonstrated through a simulation study and an application of the mixed ridge approach to data arising from a study of cardiometabolic biomarker responses to evoked inflammation induced by experimental low-dose endotoxemia.

摘要

技术进步促进了大量生物标志物数据的获取,为随时间推移理解和表征疾病进展带来了新机遇。然而,这也带来了分析挑战,因为存在大量潜在的信息性标志物、它们之间的高度相关性以及关联的时间依赖性轨迹。我们提出了一种混合岭估计器,它将岭回归整合到混合效应建模框架中,以便既考虑因随时间对每个个体重复测量结果而产生的相关性,又考虑可能的预测变量之间潜在的高度相关性。描述了一种期望最大化算法来处理未知的方差和协方差参数。通过模拟研究以及将混合岭方法应用于一项关于心脏代谢生物标志物对实验性低剂量内毒素血症诱发的炎症反应的数据研究,展示了模型性能。

相似文献

1
Ridge regression for longitudinal biomarker data.
Int J Biostat. 2011;7(1):Article 37. doi: 10.2202/1557-4679.1353. Epub 2011 Sep 27.
2
3
A score test for genetic class-level association with nonlinear biomarker trajectories.
Stat Med. 2017 Aug 30;36(19):3075-3091. doi: 10.1002/sim.7314. Epub 2017 May 23.
4
A latent class approach for joint modeling of a time-to-event outcome and multiple longitudinal biomarkers subject to limits of detection.
Stat Methods Med Res. 2020 Jun;29(6):1624-1638. doi: 10.1177/0962280219871679. Epub 2019 Aug 30.
5
Joint analysis of left-censored longitudinal biomarker and binary outcome via latent class modeling.
Stat Med. 2018 Jun 15;37(13):2162-2173. doi: 10.1002/sim.7642. Epub 2018 Apr 2.
6
Modeling biomarker variability in joint analysis of longitudinal and time-to-event data.
Biostatistics. 2024 Apr 15;25(2):577-596. doi: 10.1093/biostatistics/kxad009.
7
Effect of heteroscedasticity between treatment groups on mixed-effects models for repeated measures.
Pharm Stat. 2018 Sep;17(5):578-592. doi: 10.1002/pst.1872. Epub 2018 Jul 6.
8
Functional joint model for longitudinal and time-to-event data: an application to Alzheimer's disease.
Stat Med. 2017 Sep 30;36(22):3560-3572. doi: 10.1002/sim.7381. Epub 2017 Jun 30.
9
Ridge regression and its applications in genetic studies.
PLoS One. 2021 Apr 8;16(4):e0245376. doi: 10.1371/journal.pone.0245376. eCollection 2021.

本文引用的文献

1
Accommodating linkage disequilibrium in genetic-association analyses via ridge regression.
Am J Hum Genet. 2008 Feb;82(2):375-85. doi: 10.1016/j.ajhg.2007.10.012.
2
Ridge regression based hybrid genetic algorithms for multi-locus quantitative trait mapping.
Int J Bioinform Res Appl. 2005;1(3):261-72. doi: 10.1504/IJBRA.2005.007905.
3
Clustering of cardiovascular risk factors: targeting high-risk individuals.
Am J Cardiol. 1995 Jul 13;76(2):8A-20A. doi: 10.1016/s0002-9149(05)80010-4.
4
Random-effects models for longitudinal data.
Biometrics. 1982 Dec;38(4):963-74.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验