Division of Biostatistics and Bioinformatics, Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA.
Parexel International Co., Ltd., Taiwan.
Stat Methods Med Res. 2020 Jun;29(6):1624-1638. doi: 10.1177/0962280219871679. Epub 2019 Aug 30.
Multiple biomarkers on different biological pathways are often measured over time to investigate the complex mechanism of disease development and progression. Identification of informative subpopulation patterns of longitudinal biomarkers and clinical endpoint may assist in risk stratification and provide insights into new therapeutic targets. Motivated by a multicenter study to assess the inflammatory markers of sepsis in patients with community-acquired pneumonia, we propose a joint latent class analysis of multiple biomarkers and a time-to-event outcome while accounting for censored biomarker measurements due to detection limits. The interrelationship between biomarker trajectories and clinical endpoint is fully captured by a latent class structure, which reveals the subpopulation profiles of biomarkers and clinical outcome. The estimation of joint latent class models becomes more complicated when biomarkers are subject to detection limits. Based on a Metropolis-Hastings method, we develop a Monte Carlo Expectation-Maximization (MCEM) algorithm to estimate model parameters. We demonstrate the satisfactory performance of our MCEM algorithm using simulation studies, and apply our method to the motivating study to examine the heterogeneous patterns of cytokine responses to pneumonia and associated mortality risks.
通常会在不同的时间测量多个生物标志物的多个生物途径,以研究疾病发展和进展的复杂机制。识别纵向生物标志物和临床终点的信息丰富的亚群模式可能有助于风险分层,并为新的治疗靶点提供见解。受一项评估社区获得性肺炎患者脓毒症炎症标志物的多中心研究的启发,我们提出了一种联合潜在类别分析多个生物标志物和时间事件结局的方法,同时考虑了由于检测限而导致的生物标志物测量值被删失的情况。通过潜在类别结构充分捕捉了生物标志物轨迹和临床结局之间的相互关系,该结构揭示了生物标志物和临床结局的亚群特征。当生物标志物受到检测限时,联合潜在类别模型的估计会变得更加复杂。基于 Metropolis-Hastings 方法,我们开发了一种蒙特卡罗期望最大化(MCEM)算法来估计模型参数。我们使用模拟研究证明了我们的 MCEM 算法的令人满意的性能,并将我们的方法应用于激发性研究,以检查细胞因子对肺炎的反应和相关死亡风险的异质模式。