Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
Pflugers Arch. 2012 Feb;463(2):279-95. doi: 10.1007/s00424-011-1049-8. Epub 2011 Nov 4.
Intracellular Ca(2+) signals underlying conducted vasoconstriction to local application of a brief depolarizing KCl stimulus was investigated in rat mesenteric terminal arterioles (<40 μm). Using a computer model of an arteriole segment comprised of coupled endothelial cells (EC) and vascular smooth muscle cells (VSMC) simulations of both membrane potential and intracellular [Ca(2+)] were performed. The "characteristic" length constant, λ, was approximated using a modified cable equation in both experiments and simulations. We hypothesized that K(+) conductance in the arteriolar wall limit the electrotonic spread of a local depolarization along arterioles by current dissipation across the VSMC plasma membrane. Thus, we anticipated an increased λ by inhibition of voltage-activated K(+) channels. Application of the BK(Ca) channel blocker iberiotoxin (100 nM) onto mesenteric arterioles in vitro and inhibition of BK(Ca) channel current in silico increased λ by 34% and 32%, respectively. Similarly, inhibition of K(V) channels in vitro (4-aminopyridine, 1 mM) or in silico increased λ by 41% and 21%, respectively. Immunofluorescence microscopy demonstrated expression of BK(Ca), Kv1.5, Kv2.1, but not Kv1.2, in VSMCs of rat mesenteric terminal arterioles. Our results demonstrate that inhibition of voltage-activated K(+) channels enhance vascular-conducted responses to local depolarization in terminal arterioles by increasing the membrane resistance of VSMCs. These data contribute to our understanding of how differential expression patterns of voltage-activated K(+) channels may influence conducted vasoconstriction in small arteriolar networks. This finding is potentially relevant to understanding the compromised microcirculatory blood flow in systemic vascular diseases such as diabetes mellitus and hypertension.
我们研究了局部短暂去极化 KCl 刺激引起的大鼠肠系膜末端小动脉(<40μm)中细胞内 Ca(2+)信号的传导性血管收缩。使用由内皮细胞 (EC) 和血管平滑肌细胞 (VSMC) 组成的动脉段计算机模型,对膜电位和细胞内 [Ca(2+)] 进行了模拟。在实验和模拟中,我们使用改良的电缆方程来近似“特征”长度常数 λ。我们假设,血管壁中的 K(+) 电导通过跨 VSMC 质膜的电流耗散限制局部去极化沿小动脉的电紧张传播。因此,我们预计电压激活的 K(+) 通道抑制会增加 λ。在离体肠系膜动脉上应用 BK(Ca) 通道阻断剂 Iberiotoxin(100nM)和在计算机模型中抑制 BK(Ca) 通道电流,分别使 λ 增加了 34%和 32%。同样,离体(4-氨基吡啶,1mM)或计算机模型中抑制 K(V) 通道分别使 λ 增加了 41%和 21%。免疫荧光显微镜显示,大鼠肠系膜末端小动脉的 VSMCs 中表达 BK(Ca)、Kv1.5、Kv2.1,但不表达 Kv1.2。我们的结果表明,抑制电压激活的 K(+) 通道通过增加 VSMC 的膜电阻,增强了末端小动脉对局部去极化的血管传导反应。这些数据有助于我们理解电压激活的 K(+) 通道的差异表达模式如何影响小血管网络中的传导性血管收缩。这一发现可能与理解糖尿病和高血压等系统性血管疾病中受损的微循环血流有关。